解:(I)依題意,f(x)=g(x),即ax
2+ax=x-a,
整理,得ax
2+(a-1)x+a=0,①
∵a≠0,函數(shù)f(x)與g(x)圖象相交于不同的兩點A、B,
∴△>0,即△=(a-1)
2-4a
2=-3a
2-2a+1=(3a-1)(-a-1)>0.
∴-1<a<
且a≠0.
設(shè)A(x
1,y
1),B(x
2,y
2),且x
1<x
2,由①得,x
1•x
2=1>0,x
1+x
2=-
.
設(shè)點O到直線g(x)=x-a的距離為d,則d=
,
∴S
△OAB=
=
.
∵∴-1<a<
且a≠0,∴當a=-
時,S
△OAB有最大值
;
(II)證明:由題意可知f(x)-g(x)=a(x-p)(x-q)
∴f(x)-(p-a)=a(x-p)(x-q)+x-a-(p-a)=(x-p)(ax-aq+1),
當x∈(0,p)時,x-p<0,且ax-aq+1>1-aq>0,
∴f(x)-(p-a)<0,
∴f(x)<p-a.
分析:(I)依題意,f(x)=g(x),函數(shù)f(x)與g(x)圖象相交于不同的兩點A、B,則△>0,求出a的范圍,設(shè)A(x
1,y
1),B(x
2,y
2),求出AB以及點O到直線g(x)=x-a的距離,從而求出三角形的面積關(guān)于a的函數(shù),根據(jù)a的范圍求出面積的最值;
(II)由f(x)-g(x)=a(x-p)(x-q),以及g(x)=x-a,表示出f(x),代入f(x)-(p-a)中,因式分解后,判定其積小于0,從而得到f(x)小于p-a,得證.
點評:本題考查了三角形面積的計算,以及利用二次函數(shù)研究函數(shù)的最值,考查不等式的證明.根據(jù)題意設(shè)出f(x)-g(x)是解本題的關(guān)鍵,證明不等式的方法是靈活運用“作差法”,屬于中檔題.