【題目】某大學(xué)城校區(qū)與本部校區(qū)之間的駕車單程所需時(shí)間為,只與道路暢通狀況有關(guān),對(duì)其容量為500的樣本進(jìn)行統(tǒng)計(jì),結(jié)果如下:
(分鐘) | 25 | 30 | 35 | 40 |
頻數(shù)(次) | 100 | 150 | 200 | 50 |
以這500次駕車單程所需時(shí)間的頻率代替某人1次駕車單程所需時(shí)間的概率.
(1)求的分布列與;
(2)某天有3位教師獨(dú)自駕車從大學(xué)城校區(qū)返回本部校區(qū),記表示這3位教師中駕車所用時(shí)間少于的人數(shù),求的分布列與;
(3)下周某天張老師將駕車從大學(xué)城校區(qū)出發(fā),前往本部校區(qū)做一個(gè)50分鐘的講座,結(jié)束后立即返回大學(xué)城校區(qū),求張老師從離開大學(xué)城校區(qū)到返回大學(xué)城校區(qū)共用時(shí)間不超過120分鐘的概率.
【答案】(1)見解析;(2)見解析;(3).
【解析】
(1)以頻率估計(jì)頻率,即可取得的分布列,求出期望,得到概率即可;
(2)判斷分布列是二項(xiàng)分布,然后列出分布列,利用公式求解期望;
(3)設(shè)分別表示往返所需時(shí)間,設(shè)事件表示“從離開大學(xué)城校區(qū)到返回大學(xué)城校區(qū)共用事件不超過120分鐘”,則
,求解概率即可.
(1)以頻率估計(jì)頻率得的分布列為:
25 | 30 | 35 | 40 | |
0.2 | 0.3 | 0.4 | 0.1 |
∴(分鐘),.
(2),().
0 | 1 | 2 | 3 | |
.
(3)設(shè),分別表示往返所需時(shí)間,設(shè)事件表示“從離開大學(xué)城校區(qū)到返回大學(xué)城校區(qū)共用時(shí)間不超過120分鐘”,則 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求在區(qū)間上的最值;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時(shí),有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=﹣an﹣( )n﹣1+2(n∈N*),數(shù)列{bn}滿足bn=2nan .
(Ⅰ)求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=log2 ,數(shù)列{ }的前n項(xiàng)和為Tn , 求滿足Tn (n∈N*)的n的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓C: =1(a>b>0)的中心在原點(diǎn),焦點(diǎn)在x軸上,焦距為2,且與橢圓x2+ =1有相同離心率,直線l:y=kx+m與橢圓C交于不同的A,B兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若在橢圓C上存在點(diǎn)Q,滿足 ,(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)λ取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=k3n﹣m,且a1=3,a3=27.
(I)求證:數(shù)列{an}是等比數(shù)列;
(II)若anbn=log3an+1 , 求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓錐曲線 E: .
(I)求曲線 E的離心率及標(biāo)準(zhǔn)方程;
(II)設(shè) M(x0 , y0)是曲線 E上的任意一點(diǎn),過原點(diǎn)作⊙M:(x﹣x0)2+(y﹣y0)2=8的兩條切線,分別交曲線 E于點(diǎn) P、Q.
①若直線OP,OQ的斜率存在分別為k1 , k2 , 求證:k1k2=﹣ ;
②試問OP2+OQ2是否為定值.若是求出這個(gè)定值,若不是請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖ABCD是平面四邊形,∠ADB=∠BCD=90°,AB=4,BD=2.
(Ⅰ)若BC=1,求AC的長(zhǎng);
(Ⅱ)若∠ACD=30°,求tan∠BDC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且對(duì)任意正整數(shù)n都有an是n與Sn的等差中項(xiàng),bn=an+1.
(1)求證:數(shù)列{bn}是等比數(shù)列,并求出其通項(xiàng)bn;
(2)若數(shù)列{Cn}滿足Cn= 且數(shù)列{C }的前n項(xiàng)和為Tn , 證明Tn<2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(1+3x)n的展開式中,末三項(xiàng)的二項(xiàng)式系數(shù)的和等于121,求:
(1) 展開式中二項(xiàng)式系數(shù)最大的項(xiàng);
(2) 展開式中系數(shù)最大的項(xiàng).(結(jié)果可以以組合數(shù)形式表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com