分析 利用平方差公式對題設(shè)中的等式化簡整理求得$\sqrt{{S}_{n}}$-$\sqrt{{S}_{n-1}}$=1,進(jìn)而根據(jù)等差數(shù)列的定義判斷出數(shù)列{$\sqrt{{S}_{n}}$}是一個首項為1公差為1的等差數(shù)列.進(jìn)而根據(jù)首項和公差求得數(shù)列{$\sqrt{{S}_{n}}$}的通項公式,進(jìn)而根據(jù)an=Sn-Sn-1求得a
解答 解:Sn-Sn-1=($\sqrt{S_n}+\sqrt{{S_{n-1}}}$)($\sqrt{{S}_{n}}$-$\sqrt{{S}_{n-1}}$)=$\sqrt{S_n}+\sqrt{{S_{n-1}}}$(n≥2),
∴$\sqrt{{S}_{n}}$-$\sqrt{{S}_{n-1}}$=1
∴數(shù)列{$\sqrt{{S}_{n}}$}是一個首項為1公差為1的等差數(shù)列.
∴$\sqrt{{S}_{n}}$=1+(n-1)×1=n,
∴Sn=n2.
當(dāng)n≥2,an=Sn-Sn-1=n2-(n-1)2=2n-1;
a1=1適合上式,
∴an=2n-1,
故答案為:2n-1
點評 本題主要考查了等差關(guān)系的確定和遞推公式,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 奇函數(shù) | B. | 偶函數(shù) | C. | 非奇非偶函數(shù) | D. | 單調(diào)函數(shù) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com