1.已知(2x-1)3=a0+a1x+a2x2+a3x3+a4x4,則a1+a2+a3+a4=( 。
A.0B.1C.2D.-1

分析 由條件求得 a0=1,令x=1可得 a0+a1+a2+a3+a4=1,由此可得a1+a2+a3+a4 的值.

解答 解:若(2x-1)3=a0+a1x+a2x2+a3x3+a4x4,
則a4=0,
令x=0,則a0=1,
令x=1可得 a0+a1+a2+a3+a4=1,
∴a1+a2+a3+a4=0.
故選:A.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,注意根據(jù)題意,分析所給代數(shù)式的特點(diǎn),通過(guò)給二項(xiàng)式的x賦值,求展開(kāi)式的系數(shù)和,可以簡(jiǎn)便的求出答案,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)變量x,y滿(mǎn)足不等式$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,則x2+y2的最小值是(  )
A.$\frac{3\sqrt{2}}{2}$B.$\frac{9}{2}$C.$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知數(shù)列{an}前n項(xiàng)和為Sn,a1=-$\frac{2}{3}$,且Sn+$\frac{1}{Sn}$+2=an(n≥2).
(1)計(jì)算S1,S2,S3,S4的值,猜想Sn的解析式;
(2)用數(shù)學(xué)歸納法證明所得的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.不等式|2a-b|+|a+b|≥|a|(|x-1|+|x+1|)對(duì)于任意不為0的實(shí)數(shù)a,b恒成立,則實(shí)數(shù)x的范圍為(  )
A.$(-∞,-\frac{1}{2}]∪[\frac{1}{2},+∞)$B.$[-\frac{1}{2},\frac{1}{2}]$C.$(-∞,-\frac{3}{2}]∪[\frac{3}{2},+∞)$D.$[-\frac{3}{2},\frac{3}{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下面四個(gè)推理中,屬于演繹推理的是( 。
A.觀察下列各式:$\frac{3}{5}$<$\frac{3+1}{5+1}$,$\frac{3}{5}$<$\frac{3+2}{5+2}$,$\frac{3}{5}$<$\frac{3+3}{5+3}$,…,則$\frac{3}{5}$<$\frac{3+m}{5+m}$(m為正整數(shù))
B.觀察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,可得偶函數(shù)的導(dǎo)函數(shù)為奇函數(shù)
C.在平面上,若兩個(gè)正三角形的邊長(zhǎng)比為1:2,則它們的面積比為1:4,類(lèi)似的,在空間中,若兩個(gè)正四面體的棱長(zhǎng)比為1:2,則它們的體積比為1:8
D.所有平行四邊形對(duì)角線互相平分,矩形是平行四邊形,所以矩形的對(duì)角線互相平分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=lnax,其中a>0,過(guò)點(diǎn)A(0,a)作與x軸平行的直線交函數(shù)f(x)的圖象于點(diǎn)P,過(guò)點(diǎn)P作f(x)圖象的切線交y軸于點(diǎn)B,則△ABP面積的最小值為$\frac{e}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)回歸方程$\widehat{y}$=7-3x,當(dāng)變量x增加兩個(gè)單位時(shí)( 。
A.y平均增加3個(gè)單位B.y平均減少3個(gè)單位
C.y平均增加6個(gè)單位D.y平均減少6個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{x^2}{{1+{x^2}}}$.
(Ⅰ)分別求$f(2)+f(\frac{1}{2})$,$f(3)+f(\frac{1}{3})$,$f(4)+f(\frac{1}{4})$的值;
(Ⅱ)歸納猜想一般性結(jié)論,并給出證明;
(Ⅲ)求值:$f(1)+f(2)+…+f(2011)+f(\frac{1}{2011})+f(\frac{1}{2010})+…+f(\frac{1}{2})+f(1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若tanα=3tanβ,其中0<β≤α<$\frac{π}{2}$,則α-β的最大值為$\frac{π}{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案