分析 (1)根據(jù)數(shù)列的遞推公式代值計(jì)算即可,并猜想其結(jié)論,
(2)利用數(shù)學(xué)歸納法進(jìn)行證明.
解答 解:(1)S1=a1=-$\frac{2}{3}$,S2+$\frac{1}{{S}_{2}}$+2=S2-(-$\frac{2}{3}$),解得S2=-$\frac{3}{4}$,
S3+$\frac{1}{{S}_{3}}$+2=S3-S2⇒S3=-$\frac{4}{5}$,S4+$\frac{1}{{S}_{4}}$+2=S4-S3⇒S4=-$\frac{5}{6}$.
猜想:Sn=-$\frac{n+1}{n+2}$(n∈N+).
(2)證:①當(dāng)n=1時(shí),左邊=S1=a1=-$\frac{2}{3}$,右邊=-$\frac{1+1}{1+2}$=-$\frac{2}{3}$.
∵左邊=右邊,
∴原等式成立.
②當(dāng)n=k時(shí),假設(shè)Sk=-$\frac{k+1}{k+2}$成立,
由Sk+1+$\frac{1}{Sk+1}$+2=Sk+1-Sk得$\frac{1}{Sk+1}$=-Sk-2=$\frac{k+1}{k+2}$-2=$\frac{k+1-2k-4}{k+2}$=$\frac{-k-3}{k+2}$=-$\frac{k+3}{k+2}$,
∴Sk+1=-$\frac{k+2}{k+3}$=-$\frac{(k+1)+1}{(k+1)+2}$,
∴當(dāng)n=k+1時(shí),原等式也成立.
綜合①②得對(duì)一切n∈N+,Sn=-$\frac{n+1}{n+2}$成立.
點(diǎn)評(píng) 本題考查數(shù)列的前n項(xiàng)和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意數(shù)學(xué)歸納法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i≤504 | B. | i≤2009 | C. | i<2013 | D. | i≤2013 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | 3 | C. | -3 | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com