17.第十二屆全國人民代表大會第五次會議和政協(xié)第十二屆全國委員會第五次會議(簡稱兩會)分別于2017年3月5日和3月3日在北京開幕,某高校學(xué)生會為了解該校學(xué)生對全國兩會的關(guān)注情況,隨機(jī)調(diào)查了該校200名學(xué)生,并將這200名學(xué)生分為對兩會“比較關(guān)注”與“不太關(guān)注”兩類,已知這200名學(xué)生中男生比女生多20人,對兩會“比較關(guān)注”的學(xué)生中男生人數(shù)比女生人數(shù)之比為$\frac{4}{3}$,對兩會“不太關(guān)注”的學(xué)生中男生比女生少5人.
(Ⅰ)根據(jù)題意建立的2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為男生與女生對兩會的關(guān)注有差異?
(Ⅱ)該校學(xué)生會從對兩會“比較關(guān)注”的學(xué)生中根據(jù)性別進(jìn)行分層抽樣,從中抽取7人,再從這7人中隨機(jī)選出2人參與兩會宣傳活動,求這2人全是男生的概率.
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828

分析 (Ⅰ),求出x,y的值,列出列聯(lián)表,利用公式求出k2,與臨界值比較,即可得出結(jié)論;
(Ⅱ)求出比例,即可確定男生和女生抽取的人數(shù),確定所有基本事件、滿足條件的基本事件,即可求2人全是男生的概率.

解答 解:(Ⅰ)設(shè)男生比較關(guān)注和不太關(guān)注的人分別為x,y,則女生比較關(guān)注和不關(guān)注的為85-y,y+5,
由題意可得:x+y=110,$\frac{x}{85-y}=\frac{4}{3}$,
可得x=100,y=10,由此可得2×2列聯(lián)表為:

比較關(guān)注不太關(guān)注合計(jì)
男生10010110
女生751590
合計(jì)17525200
K2=$\frac{200(100×15-75×10)^{2}}{110×90×175×255}$=2.0597<6.635,所以沒有99%的把握認(rèn)為男生與女生對兩會的關(guān)注有差異.
(Ⅱ)由題意得男生抽4人,女生3人,$P=\frac{C_4^2}{C_7^2}=\frac{2}{7}$.

點(diǎn)評 本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,考查概率的求解,正確運(yùn)用公式是關(guān)鍵,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知命題p:?x∈R,使sinx-cosx=$\sqrt{3}$,命題q:集合{x|x2-2x+1=0,x∈R}有2個(gè)子集,下列結(jié)論:
①“p∧q”真命題;②命題“p∧¬q”是假命題;③命題“¬p∨¬q”真命題,正確的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.直線y=kx+1(k∈R)與橢圓$\frac{x^2}{5}+\frac{y^2}{m}=1$恒有兩個(gè)公共點(diǎn),則m的取值范圍為(1,5)∪(5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知z=$\frac{(1-i)^{2}}{1+i}$,則z的共軛復(fù)數(shù)的虛部為(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}前n項(xiàng)和為Sn,a1=-$\frac{2}{3}$,且Sn+$\frac{1}{Sn}$+2=an(n≥2).
(1)計(jì)算S1,S2,S3,S4的值,猜想Sn的解析式;
(2)用數(shù)學(xué)歸納法證明所得的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.橢圓x2+4y2=16的離心率為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.不等式|2a-b|+|a+b|≥|a|(|x-1|+|x+1|)對于任意不為0的實(shí)數(shù)a,b恒成立,則實(shí)數(shù)x的范圍為( 。
A.$(-∞,-\frac{1}{2}]∪[\frac{1}{2},+∞)$B.$[-\frac{1}{2},\frac{1}{2}]$C.$(-∞,-\frac{3}{2}]∪[\frac{3}{2},+∞)$D.$[-\frac{3}{2},\frac{3}{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=lnax,其中a>0,過點(diǎn)A(0,a)作與x軸平行的直線交函數(shù)f(x)的圖象于點(diǎn)P,過點(diǎn)P作f(x)圖象的切線交y軸于點(diǎn)B,則△ABP面積的最小值為$\frac{e}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知數(shù)列{an}滿足a1=60,an+1-an=2n,則$\frac{{a}_{n}}{n}$的最小值為(  )
A.$\frac{29}{2}$B.2$\sqrt{60}$C.$\frac{29}{4}$D.$\frac{102}{7}$

查看答案和解析>>

同步練習(xí)冊答案