A. | $\frac{29}{2}$ | B. | 2$\sqrt{60}$ | C. | $\frac{29}{4}$ | D. | $\frac{102}{7}$ |
分析 由累加法求出an=60+n2-n,所以$\frac{{a}_{n}}{n}$=$\frac{60}{n}$+n-1,設(shè)f(n)=$\frac{60}{n}$+n-1,由此能導(dǎo)出n=8時(shí)f(n)有最小值.借此能得到$\frac{{a}_{n}}{n}$的最小值.
解答 解:an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2[1+2+…+(n-1)]+60=60+n2-n
所以$\frac{{a}_{n}}{n}$=$\frac{60}{n}$+n-1
設(shè)f(n)=$\frac{60}{n}$+n-1,令f′(n)=$\frac{-60}{{n}^{2}}$+1>0,
則f(n)在($\sqrt{60}$,+∞)上是單調(diào)遞增,在(0,$\sqrt{60}$)上是遞減的,
因?yàn)閚∈N+,所以當(dāng)n=8時(shí)f(n)有最小值.
又因?yàn)?\frac{{a}_{8}}{8}$=$\frac{60}{8}+7$=14.5=$\frac{29}{2}$,
故選:A.
點(diǎn)評(píng) 本題考查了遞推數(shù)列的通項(xiàng)公式的求解以及構(gòu)造函數(shù)利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,考查了同學(xué)們綜合運(yùn)用知識(shí)解決問題的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24 | B. | 20 | C. | 16 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com