【題目】設(shè)S表示所有大于﹣1的實(shí)數(shù)構(gòu)成的集合,確定所有的函數(shù):S→S,滿足以下兩個(gè)條件:
對于S內(nèi)的所有x和y,f(x+f(y)+xf(y))=y+f(x)+yf(x);在區(qū)間﹣1<x<0與x>0的每一個(gè)內(nèi), 是嚴(yán)格遞增的.求滿足上述條件的函數(shù)的方程.

【答案】解:令y=x得f(x+f(x)+xf(x))=x+f(x)+xf(x),
令x+f(x)+xf(x)=c,則f(c)=c,
帶入(1)得f(2c+c2)=2c+c2 . ∵2+c>2+(﹣1)=1,∴2c+c2=c(2+c)與c同號(hào).
若c>0,則2c+c2>c,但 ,與 在x>0時(shí)嚴(yán)格遞增相矛盾,
若c<0,同樣導(dǎo)出矛盾,
∴c=0,從而對一切x∈S有x+f(x)+xf(x)=0,

【解析】令y=x可得f(x+f(x)+xf(x))=x+f(x)+xf(x),令x+f(x)+xf(x)=c,則f(c)=c,代入(1)可得f(2c+c2)=2c+c2 . 對c的符號(hào)進(jìn)行討論得出c=0即x+f(x)+xf(x)=0,從而得出f(x)的解析式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足:a1=1,an+1+(﹣1)nan=2n﹣1.
(1)求a2 , a4 , a6
(2)設(shè)bn=a2n , 求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,求S2018

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的左右焦點(diǎn)分別為F1 , F2 , 點(diǎn) 為短軸的一個(gè)端點(diǎn),∠OF2B=60°.
(Ⅰ)求橢圓C的方程;
(Ⅱ)如圖,過右焦點(diǎn)F2 , 且斜率為k(k≠0)的直線l與橢圓C相交于D,E兩點(diǎn),A為橢圓的右頂點(diǎn),直線AE,AD分別交直線x=3于點(diǎn)M,N,線段MN的中點(diǎn)為P,記直線PF2的斜率為k′.試問kk′是否為定值?若為定值,求出該定值;若不為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一年級(jí)的A,B,C三個(gè)班共有學(xué)生120人,為調(diào)查他們的體育鍛煉情況,用分層抽樣的方法從這三個(gè)班中分別抽取4,5,6名學(xué)生進(jìn)行調(diào)查. (Ⅰ)求A,B,C三個(gè)班各有學(xué)生多少人;
(Ⅱ)記從C班抽取學(xué)生的編號(hào)依次為C1 , C2 , C3 , C4 , C5 , C6 , 現(xiàn)從這6名學(xué)生中隨機(jī)抽取2名做進(jìn)一步的數(shù)據(jù)分析.
(i)列出所有可能抽取的結(jié)果;
(ii)設(shè)A為事件“編號(hào)為C1和C2的2名學(xué)生中恰有一人被抽到”,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 上單調(diào)遞增,

(1)若函數(shù)有實(shí)數(shù)零點(diǎn),求滿足條件的實(shí)數(shù)的集合

(2)若對于任意的時(shí),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:極坐標(biāo)與參數(shù)方程

在平面直角坐標(biāo)系xoy中,曲線,直線過點(diǎn)與曲線交于二點(diǎn), 中點(diǎn).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,以平面直角坐標(biāo)系xoy的單位1為基本單位建立極坐標(biāo)系.

(1)求直線的極坐標(biāo)方程;

(2) 為曲線上的動(dòng)點(diǎn),求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合M={x|﹣2<x<2},N={x|x2﹣2x﹣3<0},則集合M∩N=(
A.{x|x<﹣2}
B.{x|x>3}
C.{x|﹣1<x<2}
D.{x|2<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)Sn是數(shù)列[an}的前n項(xiàng)和,
(1)求{an}的通項(xiàng);
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=loga|x+1|在區(qū)間(﹣2,﹣1)上恒有f(x)>0,則關(guān)于a的不等式f(4a﹣1)>f(1)的解集為

查看答案和解析>>

同步練習(xí)冊答案