【題目】如圖,在三棱柱ABC-A1B1C1中,側(cè)面B1BCC1是正方形,M,N分別是A1B1AC的中點,AB⊥平面BCM

(Ⅰ)求證:平面B1BCC1⊥平面A1ABB1

(Ⅱ)求證:A1N∥平面BCM;

(Ⅲ)若三棱柱ABC-A1B1C1的體積為10,求棱錐C1-BB1M的體積.

【答案】(Ⅰ)詳見解析(Ⅱ)詳見解析(Ⅲ)

【解析】

(Ⅰ)推導(dǎo)出ABBCBB1BC,從而BC⊥平面A1ABB1,由此能證明平面B1BCC1⊥平面A1ABB1

(Ⅱ)設(shè)BC中點為Q,連結(jié)NQMQ,推導(dǎo)出四邊形A1MQN是平行四邊形,從而A1NMQ,由此能證明A1N∥平面BCM

(Ⅲ)連結(jié)A1B,根據(jù)棱柱和棱錐的體積公式,三棱錐BA1B1C1的體積,棱錐C1BB1M的體積,由此能求出結(jié)果.

證明:(Ⅰ)∵AB⊥平面BCM,BC平面BCM,∴ABBC,

∵正方形B1BCC1,∴BB1BC,

ABBB1=B,∴BC⊥平面A1ABB1,

BC平面B1BCC1,∴平面B1BCC1⊥平面A1ABB1;

(Ⅱ)設(shè)BC中點為Q,連結(jié)NQ,MQ,

MN分別是A1B1,AC的中點,∴NQAB,且NQ=AB

ABA1B1,且AB=A1B1,∴NQA1M,且NQ=A1M,

∴四邊形A1MQN是平行四邊形,∴A1NMQ,

MQ平面BCM,A1N

A1N∥平面BCM

(Ⅲ)連結(jié)A1B,根據(jù)棱柱和棱錐的體積公式,

得到三棱錐B-A1B1C1的體積==,

MA1B1的中點,

∴棱錐C1-BB1M的體積===

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,垂直平面,,,的中點.

(Ⅰ) 證明:平面平面;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動支付已成為主要支付方式之一.為了解某校學(xué)生上個月A,B兩種移動支付方式的使用情況,從全校所有的1000名學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:

支付金額

支付方式

不大于2000

大于2000

僅使用A

27

3

僅使用B

24

1

(Ⅰ)估計該校學(xué)生中上個月AB兩種支付方式都使用的人數(shù);

(Ⅱ)從樣本僅使用B的學(xué)生中隨機(jī)抽取1人,求該學(xué)生上個月支付金額大于2000元的概率;

(Ⅲ)已知上個月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用B的學(xué)生中隨機(jī)抽查1人,發(fā)現(xiàn)他本月的支付金額大于2000元.結(jié)合(Ⅱ)的結(jié)果,能否認(rèn)為樣本僅使用B的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大提出對農(nóng)村要堅持精準(zhǔn)扶貧,至 2020 年底全面脫貧. 現(xiàn)有扶貧工作組到某山區(qū)貧困村實施脫貧工作. 經(jīng)摸底排查,該村現(xiàn)有貧困農(nóng)戶 100 家,他們均從事水果種植, 2017 年底該村平均每戶年純收入為 1 萬元,扶貧工作組一方面請有關(guān)專家對水果進(jìn)行品種改良,提高產(chǎn)量;另一方面,抽出部分農(nóng)戶從事水果包裝、銷售工作,其人數(shù)必須小于種植的人數(shù). 從 2018 年初開始,若該村抽出 5x 戶( x ∈Z,1 ≤x ≤ 9) 從事水果包裝、銷售.經(jīng)測算,剩下從事水果種植農(nóng)戶的年純收入每戶平均比上一年提高,而從事包裝銷售農(nóng)戶的年純收入每戶平均為 (3-x) 萬元(參考數(shù)據(jù): 1.13 = 1.331,1.153 ≈ 1.521,1.23 = 1.728).

(1) 至 2020 年底,為使從事水果種植農(nóng)戶能實現(xiàn)脫貧(每戶年均純收入不低于 1 萬 6 千元),至少抽出多少戶從事包裝、銷售工作?

(2) 至 2018 年底,該村每戶年均純收人能否達(dá)到 1.35 萬元?若能,請求出從事包裝、銷售的戶數(shù);若不能,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖像相鄰兩條對稱軸間的距離為,且,則以下命題中為假命題的是(

A.函數(shù)上是增函數(shù).

B.函數(shù)圖像關(guān)于點對稱

C.函數(shù)的圖象可由的圖象向左平移個單位長度得到

D.函數(shù)的圖象關(guān)于直線對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績與學(xué)生細(xì)心程度的關(guān)系,在本校隨機(jī)調(diào)查了100名學(xué)生進(jìn)行研究.研究結(jié)果表明:在數(shù)學(xué)成績及格的50名學(xué)生中有40人比較細(xì)心,另外10人比較粗心;在數(shù)學(xué)成績不及格的50名學(xué)生中有20人比較細(xì)心,另外30人比較粗心.

1)試根據(jù)上述數(shù)據(jù)完成列聯(lián)表:

數(shù)學(xué)成績及格

數(shù)學(xué)成績不及格

合計

比較細(xì)心

40

比較粗心

合計

50

100

2)能否在犯錯誤的概率不超過0.001的前提下認(rèn)為學(xué)生的數(shù)學(xué)成績與細(xì)心程度有關(guān)系?

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某公園內(nèi)有兩條道路,,現(xiàn)計劃在上選擇一點,新建道路,并把所在的區(qū)域改造成綠化區(qū)域.已知,

(1)若綠化區(qū)域的面積為1,求道路的長度;

(2)若綠化區(qū)域改造成本為10萬元/,新建道路成本為10萬元/.設(shè)),當(dāng)為何值時,該計劃所需總費用最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點與橢圓的一個焦點重合,橢圓的左、右頂點分別為是橢圓上一點,記直線的斜率為、,且有.

1)求橢圓的方程;

2)若過點的直線與橢圓相交于不同兩點,且滿足為坐標(biāo)原點),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長途車站P與地鐵站O的距離為千米,從地鐵站O出發(fā)有兩條道路l1l2,經(jīng)測量,l1,l2的夾角為45°,OPl1的夾角滿足tan(其中0<θ<),現(xiàn)要經(jīng)過P修條直路分別與道路l1,l2交匯于AB兩點,并在A,B處設(shè)立公共自行車停放點.

1)已知修建道路PAPB的單位造價分別為2m/千米和m/千米,若兩段道路的總造價相等,求此時點A,B之間的距離;

2)考慮環(huán)境因素,需要對OA,OB段道路進(jìn)行翻修,OA,OB段的翻修單價分別為n/千米和n/千米,要使兩段道路的翻修總價最少,試確定AB點的位置.

查看答案和解析>>

同步練習(xí)冊答案