16.某校舉辦“校園文化藝術(shù)節(jié)”,其中一項(xiàng)猜獎(jiǎng)活動(dòng),參與者需先后回答兩道選擇題,問(wèn)題A有三個(gè)選項(xiàng),問(wèn)題B有四個(gè)選項(xiàng),但都只有一個(gè)選項(xiàng)是正確的,正確回答問(wèn)題A可獲獎(jiǎng)金a元,正確回答問(wèn)題B可獲獎(jiǎng)金b元,活動(dòng)規(guī)定:
①參與者可任意選擇回答問(wèn)題的順序;
②如果第一個(gè)問(wèn)題回答錯(cuò)誤,該參與者猜獎(jiǎng)活動(dòng)終止,不獲得任何獎(jiǎng)金;
③如果第一個(gè)問(wèn)題回答正確,可以選擇繼續(xù)答題,若第二題也答對(duì),則該參與者獲得兩道題的獎(jiǎng)金,若第二題答錯(cuò),則該參與者只能得到第一個(gè)問(wèn)題獎(jiǎng)金的一半;也可以選擇放棄答題,獲得第一題的獎(jiǎng)金,猜獎(jiǎng)活動(dòng)終止.假設(shè)一個(gè)參與者在回答問(wèn)題前,對(duì)這兩個(gè)問(wèn)題都很陌生,且在第一個(gè)問(wèn)題回答正確后,選擇繼續(xù)答題和放棄答題的可能性相等.
(Ⅰ)如果該參與者先回答問(wèn)題A,求其恰好獲得獎(jiǎng)金a+b元的概率;
(Ⅱ)試確定哪種回答問(wèn)題的順序能使該參與者獲獎(jiǎng)金額的期望值較大.

分析 (Ⅰ)獲得a+b元獎(jiǎng)金的情況是先答A,回答正確,再選擇答B(yǎng),回條也正確,由此能求出恰好獲得獎(jiǎng)金a+b元的概率.
(Ⅱ)設(shè)先回答A時(shí)獲得的獎(jiǎng)金數(shù)為ξ元,先回答B(yǎng)時(shí)獲得的獎(jiǎng)金數(shù)為η元,分別求出數(shù)學(xué)期望,由此能求出結(jié)果.

解答 解:(Ⅰ)獲得a+b元獎(jiǎng)金的情況是:
先答A,回答正確,再選擇答B(yǎng),回條也正確.
∴恰好獲得獎(jiǎng)金a+b元的概率P=$\frac{1}{3}×\frac{1}{2}×\frac{1}{4}$=$\frac{1}{24}$.
(Ⅱ)設(shè)先回答A時(shí)獲得的獎(jiǎng)金數(shù)為ξ元,
ξ的分布列為:

 ξ 0 $\frac{a}{2}$ a a+b
 P $\frac{2}{3}$ $\frac{1}{8}$ $\frac{1}{6}$ $\frac{1}{24}$
Eξ=0×$\frac{2}{3}+\frac{a}{2}×\frac{1}{8}+a×\frac{1}{6}+(a+b)×\frac{1}{24}=\frac{13}{48}a+\frac{24}$.
先回答B(yǎng)時(shí)獲得的獎(jiǎng)金數(shù)為η元,
η的分布列為:
 η 0 $\frac{2}$ b a+b
 P $\frac{3}{4}$ $\frac{1}{12}$ $\frac{1}{8}$ $\frac{1}{24}$
Eη=$0×\frac{3}{4}+\frac{2}×\frac{1}{12}+b×\frac{1}{8}+(a+b)×\frac{1}{24}=\frac{a}{24}+\frac{5}{24}b$,
由Eξ-Eη=$\frac{11}{48}a-\frac{4}{24}b>0$,解得a>$\frac{8}{11}b$,
∴當(dāng)a>$\frac{8}{11}b$時(shí),先選答A題,可使獲獎(jiǎng)金額的期望較大;
當(dāng)a<$\frac{8}{11}b$時(shí),先選答B(yǎng)題,可使獲獎(jiǎng)金額的期望較大;
當(dāng)a=$\frac{8}{11}b$時(shí),先選答A題與先選答B(yǎng),可使獲獎(jiǎng)金額的期望較大.

點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望的求法及應(yīng)用,是中檔題,解題時(shí)要認(rèn)真審題,在歷年高考中都是必考題型之一.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知拋物線C:x2=4y的焦點(diǎn)為F,過(guò)點(diǎn)F作直線l交拋物線C于A、B兩點(diǎn);橢圓E的中心在原點(diǎn),焦點(diǎn)在x軸上,點(diǎn)F是它的一個(gè)頂點(diǎn),且其離心率e=$\frac{{\sqrt{3}}}{2}$.
(1)求橢圓E的方程;
(2)設(shè)直線l的斜率為k,經(jīng)過(guò)A、B兩點(diǎn)分別作拋物線C的切線l1、l2,若切線l1與l2相交于點(diǎn)M.當(dāng)k變化時(shí),點(diǎn)M的縱坐標(biāo)是否為定值?若是,求出這個(gè)定值;否則,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在等腰△ABC中,∠BAC=90°,AB=AC=2,$\overrightarrow{BC}=2\overrightarrow{BD}$,$\overrightarrow{AC}=3\overrightarrow{AE}$,則$\overrightarrow{AD}•\overrightarrow{BE}$的值為-$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖:四棱錐P-ABCD的底面是平行四邊形,∠DAB=60°,平面PAB⊥ABD,
AP=2AD=4,PD=$2\sqrt{5}$,E為AD的中點(diǎn),F(xiàn)為PB的中點(diǎn).
(Ⅰ) 求證:EF‖平面PCD;
(Ⅱ) 當(dāng)二面角A-PD-B的余弦值為$\frac{1}{4}$時(shí),求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在△ABC中,∠A=45°,AB=3,AC=2$\sqrt{2}$,M、N分別為AB、BC的中點(diǎn),P為AC上任一點(diǎn),則$\overrightarrow{MP}•\overrightarrow{NP}$的最小值是( 。
A.$\frac{1}{4}$B.$\frac{3}{8}$C.$\frac{1}{2}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,某簡(jiǎn)單幾何體的一個(gè)面ABC內(nèi)接于圓M,AB是圓M的直徑,CF∥BE,BE⊥平面ABC,且AB=2,AC=1,BE+CF=7.
(Ⅰ)求證:AC⊥EF:
(Ⅱ)當(dāng)CF為何值時(shí),平面AEF與平面ABC所成的銳角取得最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{1+lnx}{x}$
(1)若函數(shù)在區(qū)間(a,a+$\frac{1}{2}$)(其中a>0)上存在極值,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x≥1時(shí),求證:不等式f(x)>$\frac{2cos2x}{x+1}$恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.拋物線x=-$\frac{1}{4}$y2的焦點(diǎn)坐標(biāo)是( 。
A.(-1,0)B.(0,-1)C.(-$\frac{1}{16}$,0)D.(0,-$\frac{1}{16}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.2016年1月1日起全國(guó)統(tǒng)一實(shí)施全面兩孩政策.為了解適齡民眾對(duì)放開生育二胎政策的態(tài)度,某市選取70后80后作為調(diào)查對(duì)象,隨機(jī)調(diào)查了100位,得到數(shù)據(jù)如表:
生二胎不生二胎合計(jì)
70后301545
80后451055
合計(jì)7525100
(1)根據(jù)調(diào)查數(shù)據(jù),判斷是否有90%以上把握認(rèn)為“生二胎與年齡有關(guān)”,并說(shuō)明理由:
參考數(shù)據(jù):
P(K2>k)0.150.100.050.0250.0100.005
k2.7022.7063.8415.0246.6357.879
(參考公式:K2=$\frac{{n{{({ac-bd})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)
(2)以這100人的樣本數(shù)據(jù)估計(jì)該市的總體數(shù)據(jù),且以頻率估計(jì)概率,若從該市70后公民中(人數(shù)很多)隨機(jī)抽取3位,記其中生二胎的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案