6.函數(shù) y=2sin(2x+$\frac{π}{3}$)的圖象,可由函數(shù)y=sinx 的圖象怎樣變換得到?并畫出圖形.

分析 根據(jù)函數(shù)圖象變換的原則知y=2sin(2x+$\frac{π}{3}$)的圖象是由y=sinx先向左平移$\frac{π}{3}$個單位,
再使縱坐標(biāo)不變,橫坐標(biāo)變?yōu)?\frac{1}{2}$倍,最后使縱坐標(biāo)變?yōu)?倍,橫坐標(biāo)不變.

解答 解:畫出函數(shù)的圖象,如圖所示:
這種曲線由圖象變換得到,即
y=sinx的圖象向左平移$\frac{π}{3}$個單位,得函數(shù)y=sin(x+$\frac{π}{3}$)的圖象;
縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$倍,得函數(shù)y=sin(2x+$\frac{π}{3}$)的圖象;
橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,得函數(shù)y=2sin(2x+$\frac{π}{3}$)的圖象.

點(diǎn)評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換與應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=|{x-a}|+\frac{1}{2a}({a≠0})$
(1)若不等式f(x)-f(x+m)≤1恒成立,求實(shí)數(shù)m的最大值;
(2)當(dāng)a<$\frac{1}{2}$時,函數(shù)g(x)=f(x)+|2x-1|有零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為120°,且,|$\overrightarrow{a}$|=m,|$\overrightarrow$|=2m(m≠0),若$\overrightarrow{a}$⊥($\overrightarrow{a}$-λ$\overrightarrow$),則λ=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.關(guān)于x的不等式ax2+ax+a-1<0對一切實(shí)數(shù)恒成立,則實(shí)數(shù)a的取值范圍是(-∞,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求函數(shù)y=2x5+$\frac{4}{x}$-$\root{3}{x}$+22-5x+lnx的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.小明同學(xué)在寒假社會實(shí)踐活動中,對白天平均氣溫與某家奶茶店的A品牌飲料銷量之間的關(guān)系進(jìn)行了分析研究,他分別記錄了1月11日至1月15日的白天氣溫x(°C)與該奶茶店的A品牌飲料銷量y(杯),得到如下表數(shù)據(jù):
日期1月11日1月12日1月13日1月14日1月15日
平均氣溫x(℃)91012118
銷量y(杯)2325302621
(Ⅰ)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組書記恰好是相鄰2天數(shù)據(jù)的概率;
(Ⅱ)請根據(jù)所給五組書記,求出y關(guān)于x的線性回歸方程式$\widehaty=\widehatbx+\widehata$.
(Ⅲ)根據(jù)(Ⅱ)所得的線性回歸方程,若天氣預(yù)報1月16號的白天平均氣溫為7(℃),請預(yù)測該奶茶店這種飲料的銷量.
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知直三棱柱ABC-A1B1C1的側(cè)棱長為2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是AA1的中點(diǎn).
(Ⅰ)求異面直線AB和C1D所成角的余弦值;
(Ⅱ)若E為AB上一點(diǎn),試確定點(diǎn)E在AB上的位置,使得A1E⊥C1D;
(Ⅲ)在(Ⅱ)的條件下,求點(diǎn)D到平面B1C1E的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=sinωx-$\sqrt{3}$cosωx(ω>0),若方程f(x)=-1在(0,π)上有且只有四個實(shí)數(shù)根,則實(shí)數(shù)ω的取值范圍為( 。
A.($\frac{13}{6}$,$\frac{7}{2}$]B.($\frac{7}{2}$,$\frac{25}{6}$]C.($\frac{25}{6}$,$\frac{11}{2}$]D.($\frac{11}{2}$,$\frac{37}{6}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知全集U=R,A={x|x2-2x<0},B={x|2x≥2},則A∩(∁UB)=( 。
A.{x|0<x<2}B.{x|0<x<1}C.{x|0<x≤1}D.{x|0<x≤2}

查看答案和解析>>

同步練習(xí)冊答案