17.已知A、B是兩個(gè)事件,P(B)=$\frac{1}{4}$,P(AB)=$\frac{1}{8}$,P(A|B)=$\frac{1}{2}$.

分析 由P(B)=$\frac{1}{4}$,P(AB)=$\frac{1}{8}$,利用條件概率計(jì)算公式能求出P(A|B)的值.

解答 解:∵A、B是兩個(gè)事件,P(B)=$\frac{1}{4}$,P(AB)=$\frac{1}{8}$,
∴P(A|B)=$\frac{P(AB)}{P(B)}$=$\frac{\frac{1}{8}}{\frac{1}{4}}$=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評 本題考查概率的求法,涉及到條件概率與獨(dú)立事件等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.復(fù)數(shù)z=$\frac{-i}{1+2i}$在復(fù)平面對應(yīng)的點(diǎn)位于第三象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某幾何體的三視圖如圖所示,該幾何體的體積為$\frac{9+\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在長方體ABCD-A1B1C1D1任意取點(diǎn),則該點(diǎn)落在四棱錐B1-ABCD內(nèi)部的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知x3+sin2x=m,y3+sin2y=-m,且$x,y∈({-\frac{π}{4},\frac{π}{4}})$,m∈R,則$tan({x+y+\frac{π}{3}})$=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.斜率是1的直線與橢圓${x^2}+\frac{y^2}{4}=1$交于A、B兩點(diǎn),P為線段AB上的點(diǎn),且AP=2PB,則點(diǎn)P的軌跡方程是148x2+13y2+64xy-20=0(在橢圓內(nèi)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在正方體ABCD-A1B1C1D1中,異面直線A1B與AD所成的角大小為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知正項(xiàng)數(shù)列{an}滿足${a_{n+1}}({{a_{n+1}}-2{a_n}})=9-{a_n}^2$,若a1=1,則a10=( 。
A.27B.28C.26D.29

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓C:x2+(y-4)2=4,直線l:(3m+1)x+(1-m)y-4=0
(Ⅰ)求直線l所過定點(diǎn)A的坐標(biāo);
(Ⅱ)求直線l被圓C所截得的弦長最短時(shí)m的值及最短弦長;
(Ⅲ)已知點(diǎn)M(-3,4),在直線MC上(C為圓心),存在定點(diǎn)N(異于點(diǎn)M),
滿足:對于圓C上任一點(diǎn)P,都有$\frac{|PM|}{|PN|}$為一常數(shù),試求所有滿足條件的點(diǎn)N的
坐標(biāo)及該常數(shù).

查看答案和解析>>

同步練習(xí)冊答案