8.某幾何體的三視圖如圖所示,該幾何體的體積為$\frac{9+\sqrt{3}}{6}$.

分析 幾何體由圓柱的$\frac{3}{4}$和一個(gè)半圓錐組成,代入數(shù)據(jù)計(jì)算即可.

解答 解:由三視圖可知結(jié)合體下方為圓柱的$\frac{3}{4}$,上方為一個(gè)半圓錐,
圓錐和圓柱的底面半徑均為1,圓柱的高為2,圓錐的高為$\sqrt{3}$,
∴幾何體的體積V=$\frac{3}{4}×π×{1}^{2}×2$+$\frac{1}{2}×\frac{1}{3}×π×{1}^{2}×\sqrt{3}$=$\frac{9+\sqrt{3}}{6}$.
故答案為:$\frac{9+\sqrt{3}}{6}$.

點(diǎn)評(píng) 本題考查了空間幾何體及其組合體的三視圖,幾何體的體積計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知拋物線y2=12x,則該拋物線的準(zhǔn)線方程為( 。
A.x=-3B.x=3C.y=-3D.y=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.“中國(guó)剩余定理”又稱“孫子定理”.1852年英國(guó)來華傳教偉烈亞利將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲1874年,英國(guó)數(shù)學(xué)家馬西森指出此法符合1801年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國(guó)剩余定理”.“中國(guó)剩余定理”講的是一個(gè)關(guān)于整除的問題,現(xiàn)有這樣一個(gè)整除問題:將2至2017這2016個(gè)數(shù)中能被3除余1且被5除余1的數(shù)按由小到大的順序排成一列,構(gòu)成數(shù)列{an},則此數(shù)列的項(xiàng)數(shù)為134.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=ex-ax-1,(a為實(shí)數(shù)),g(x)=lnx-x
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)g(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知sin α=$\frac{4\sqrt{3}}{7}$,cos(α+β)=-$\frac{11}{14}$,α,β均為銳角,求cos β 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{{x}^{2}}{2e}$-ax.
(1)若a=$\frac{1}{2}$,求曲線y=f(x)在(e,f(e))處的切線方程;
(2)若關(guān)于x的不等式f(x)≥ax-$\frac{1}{2}$≥lnx-ax在(0,+∞)上恒成立,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知物體的運(yùn)動(dòng)方程為s=$\frac{1}{4}{t^4}-4{t^3}+16{t^2}$(t表示時(shí)間,單位:秒;s表示位移,單位:米),則瞬時(shí)速度為0米每秒的時(shí)刻是( 。
A.0秒、2秒或4秒B.0秒、2秒或16秒C.0秒、4秒或8秒D.2秒、8秒或16秒

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知A、B是兩個(gè)事件,P(B)=$\frac{1}{4}$,P(AB)=$\frac{1}{8}$,P(A|B)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知曲線y=x3在(a,b)處的切線斜率為3,那么a的值是(  )
A.-1B.1C.-1或1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案