【題目】如圖所示,在三棱臺(tái)中,點(diǎn)在上,且,點(diǎn)是內(nèi)(含邊界)的一個(gè)動(dòng)點(diǎn),且有平面平面,則動(dòng)點(diǎn)的軌跡是( )
A. 平面B. 直線C. 線段,但只含1個(gè)端點(diǎn)D. 圓
【答案】C
【解析】
過(guò)D作DN∥A1C1,交B1C1于N,連結(jié)BN,則平面BDN∥平面A1C,由此得到M的軌跡是線段DM,且M與D不重合.
過(guò)D作DN∥A1C1,交B1C1于N,連結(jié)BN,∵在三棱臺(tái)A1B1C1﹣ABC中,點(diǎn)D在A1B1上,且AA1∥BD,
AA1∩A1C1=A1,BD∩DN=D,∴平面BDN∥平面A1C,
∵點(diǎn)M是△A1B1C1內(nèi)(含邊界)的一個(gè)動(dòng)點(diǎn),且有平面BDM∥平面A1C,
∴M的軌跡是線段DN,且M與D不重合,∴動(dòng)點(diǎn)M的軌跡是線段,但只含1個(gè)端點(diǎn).
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
0 | |||||
0 | 2 | 0 | 0 |
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,填寫(xiě)在相應(yīng)位置,并求出函數(shù)的解析式;
(2)把的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由實(shí)數(shù)組成的集合A具有如下性質(zhì):若,且,那么.
(1)試問(wèn)集合A能否恰有兩個(gè)元素且?若能,求出所有滿足條件的集合A;若不能,請(qǐng)說(shuō)明理由;
(2)是否存在一個(gè)含有元素0的三元素集合A;若存在請(qǐng)求出集合,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí),.
(1)求在上的解析式;
(2)若,函數(shù),是否存在實(shí)數(shù)使得的最小值為,若存在,求的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖是正方體的平面展開(kāi)圖.在這個(gè)正方體中,
①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.
以上四個(gè)命題中,正確命題的序號(hào)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義域?yàn)?/span>D的函數(shù),如果存在區(qū)間,同時(shí)滿足:①在內(nèi)是單調(diào)函數(shù);②當(dāng)定義域是時(shí),的值域也是,則稱(chēng)是該函數(shù)的“優(yōu)美區(qū)間”.
(1)求證:是函數(shù)的一個(gè)“優(yōu)美區(qū)間”.
(2)求證:函數(shù)不存在“優(yōu)美區(qū)間”.
(3)已知函數(shù)()有“優(yōu)美區(qū)間”,當(dāng)a變化時(shí),求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司在甲、乙兩地銷(xiāo)售某種品牌車(chē),利潤(rùn)(單位:萬(wàn)元)分別為和,其中為銷(xiāo)售量(單位:輛)
(1)當(dāng)銷(xiāo)售量在什么范圍時(shí),甲地的銷(xiāo)售利潤(rùn)不低于乙地的銷(xiāo)售利潤(rùn);
(2)若該公司在這兩地共銷(xiāo)售輛車(chē),則甲、乙兩地各銷(xiāo)售多少量時(shí)?該公司能獲得利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù)f(x)=4sin(2x+)(x∈R),有下列命題:
①y=f(x)的表達(dá)式可改寫(xiě)為y=4cos(2x﹣);
②y=f(x)是以2π為最小正周期的周期函數(shù);
③y=f(x)的圖象關(guān)于點(diǎn)對(duì)稱(chēng);
④y=f(x)的圖象關(guān)于直線x=﹣對(duì)稱(chēng).
其中正確的命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知半徑為的球的球面上有三個(gè)點(diǎn),其中任意兩點(diǎn)間的球面距離都等于,且經(jīng)過(guò)這三個(gè)點(diǎn)的小圓周長(zhǎng)為,則______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com