【題目】已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí),

(1)求上的解析式;

(2)若,函數(shù),是否存在實(shí)數(shù)使得的最小值為,若存在,求的值;若不存在,說明理由.

【答案】(1);(2)

【解析】

(1)由函數(shù)的奇偶性求對(duì)稱區(qū)間上的解析式;

(2)將的表達(dá)式化簡得到關(guān)于的二次函數(shù)的形式,討論對(duì)稱軸與所給區(qū)間的關(guān)系,求出最小值,滿足題意,求出的值。

(1)是定義在上的奇函數(shù),所以

不妨設(shè),則,

,則,故

所以.

(2)由(1)得

當(dāng)時(shí),

所以

,則

所以函數(shù)上的最小值即為函數(shù)上的最小值,

對(duì)稱軸為,

當(dāng)時(shí),函數(shù)在區(qū)間上是增函數(shù),

所以,解得,

當(dāng),即時(shí),,

化簡得,,解得,

因?yàn)?/span>,,所以此時(shí),

當(dāng),即時(shí),函數(shù)在區(qū)間上是減函數(shù),

所以,解得,

所以,綜上所述,存在,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位擬建一個(gè)扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點(diǎn)為圓心的兩個(gè)同心圓弧和延長后通過點(diǎn)的兩條直線段圍成.按設(shè)計(jì)要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).

1)求關(guān)于的函數(shù)關(guān)系式;

2)已知在花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時(shí),直線部分的裝飾費(fèi)用為4/米,弧線部分的裝飾費(fèi)用為9/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時(shí), 取得最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在區(qū)間上單調(diào)遞減,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的奇函數(shù),且.

1)求的解析式;

2)判斷的單調(diào)性,并證明你的結(jié)論;

3)解不等式 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)是定義域在R上的奇函數(shù),當(dāng)x0時(shí),fx=x2﹣2x

1)求出函數(shù)fx)在R上的解析式;

2)寫出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在用二次法求方程3x+3x-8=0在(12)內(nèi)近似根的過程中,已經(jīng)得到f1)<0,f1.5)>0f1.25)<0,則方程的根落在區(qū)間(  )

A. B. C. D. 不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱臺(tái)中,點(diǎn)上,且,點(diǎn)內(nèi)(含邊界)的一個(gè)動(dòng)點(diǎn),且有平面平面,則動(dòng)點(diǎn)的軌跡是( )

A. 平面B. 直線C. 線段,但只含1個(gè)端點(diǎn)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=x|xa|+2xaR).

1)若函數(shù)fx)在R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;

2)若存在實(shí)數(shù)a[4,4]使得關(guān)于x的方程fx)﹣tfa)=0恰有三個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)為橢圓上的動(dòng)點(diǎn),若的最大值和最小值分別為.

(I)求橢圓的方程

(Ⅱ)設(shè)不過原點(diǎn)的直線與橢圓 交于兩點(diǎn),若直線的斜率依次成等比數(shù)列,求面積的最大值

查看答案和解析>>

同步練習(xí)冊(cè)答案