分析 (1)通過(guò)設(shè)公差為d,利用已知條件得到方程組可求出d=q=3,進(jìn)而利用公式即得結(jié)論;
(2)通過(guò)(1)可知cn=3n-2λn,利用cn<cn+1可知λ<3n恒成立,進(jìn)而可知λ<3.
解答 解:(1)設(shè)公差為d,則$\left\{\begin{array}{l}{q+(6+d)=12}\\{6+d={q}^{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{d=3}\\{q=3}\end{array}\right.$,
所以an=3+3(n-1)=3n,bn=3n-1;
(2)由(1)可知cn=3n-2λn,
由數(shù)列{cn}是遞增數(shù)列,可知cn<cn+1恒成立,
即3n-2λn<3n+1-2λ(n+1)恒成立,即λ<3n恒成立,
顯然,數(shù)列{3n}是遞增數(shù)列,
∴當(dāng)n=1時(shí),3n取最小值3,
所以λ<3.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng),考查數(shù)列的單調(diào)性,注意解題方法的積累,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | 2 | C. | $-2\sqrt{5}$ | D. | $2\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年江西省南昌市高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題
在銳角△ABC中,BC=3,AB=,∠C=,則∠A=_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}{e^3}$ | B. | $\frac{{\sqrt{2}}}{2}{e^3}$ | C. | $\frac{{\sqrt{3}}}{2}{e^3}$ | D. | e3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z) | B. | [kπ,kπ+$\frac{π}{2}$](k∈Z) | C. | [kπ-$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z) | D. | [kπ-$\frac{π}{2}$,kπ](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com