【題目】已知函數(shù),其中是自然對數(shù)的底數(shù).

1若曲線處的切線方程為.求實數(shù)的值;

2時,函數(shù)既有極大值,又有極小值,求實數(shù)的取值范圍;

,若對一切正實數(shù)恒成立,求實數(shù)的取值范圍表示

【答案】12;.

【解析】

試題分析:1借助題設(shè)條件運用導(dǎo)數(shù)的幾何意義求解;2借助題設(shè)運用導(dǎo)數(shù)的有關(guān)知識求解.

試題解析:

1由題意知曲線過點,且;

又因為

則有,解得

2當(dāng)時,函數(shù)的導(dǎo)函數(shù)

時,得,設(shè),

,得

當(dāng)時,,函數(shù)在區(qū)間上為減函數(shù),;

僅當(dāng)時, 兩個 不同的解,設(shè)為,

0

0

極大值

極小值

此時,函數(shù)既有極大值,又有極小值.

由題意對一切正實數(shù)恒成立,取

下證對一切正實數(shù)恒成立,

首先,證明,設(shè)函數(shù),則,

當(dāng)時,;當(dāng)時,;得,即

當(dāng)且僅當(dāng)都在處取到等號,再證,設(shè),則,當(dāng)時,;

當(dāng)時,;得,即,

當(dāng)且僅當(dāng)都在處取到等號,

由上可得,所以,

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識競賽為主的《中國詩詞大會》火爆熒屏,將中學(xué)組和大學(xué)組的參賽選手按成績分為優(yōu)秀、良好、一般三個等級,隨機從中抽取了100名選手進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級人數(shù)的條形圖.

(1)若將一般等級和良好等級合稱為合格等級,根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有95%的把握認(rèn)為選手成績“優(yōu)秀”與文化程度有關(guān)?

(2)若參賽選手共6萬人,用頻率估計概率,試估計其中優(yōu)秀等級的選手人數(shù);

(3)在優(yōu)秀等級的選手中取6名,依次編號為1,2,3,4,5,6,在良好等級的選手中取6名,依次編號為1,2,3,4,5,6,在選出的6名優(yōu)秀等級的選手中任取一名,記其編號為,在選出的6名良好等級的選手中任取一名,記其編號為,求使得方程組有唯一一組實數(shù)解的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)在研究性學(xué)習(xí)中,關(guān)于三角形與三角函數(shù)知識的應(yīng)用(約定三內(nèi)角所對的邊分別是)得出如下一些結(jié)論:

1是鈍角三角形,則;

(2)若是銳角三角形,則;

(3)在三角形中,若,則

(4)在中,若,則

其中錯誤命題的個數(shù)是 ( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五棱錐中,平面平面,且

1已知點在線段上,確定的位置,使得平面;

2分別在線段上,若沿直線將四邊形向上翻折,恰好重合,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn滿足,

1)求數(shù)列{an}的通項公式;

2)求證:數(shù)列{an}中的任意三項不可能成等差數(shù)列;

3)設(shè)Tn{bn}的前n項和,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位共有老、中、青職工430,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍。為了解職工身體狀況,現(xiàn)采用分層抽樣方法進行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求曲線在點處的切線方程和函數(shù)的極值;

(Ⅱ)若對任意的 ,都有成立,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),有下列結(jié)論:

的最大值為;

的最小正周期是;

在區(qū)間上是減函數(shù);

④直線是函數(shù)的一條對稱軸方程.

其中正確結(jié)論的序號是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列滿足

1)求

2)求的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案