【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:數(shù)列{an}中的任意三項(xiàng)不可能成等差數(shù)列;
(3)設(shè),Tn為{bn}的前n項(xiàng)和,求證.
【答案】(1)數(shù)列{an}的通項(xiàng)公式為;
(2)證明過程詳見試題解析;
(3)證明過程詳見試題解析.
【解析】試題分析:(1)由,知,兩式聯(lián)立可證該數(shù)列為等比數(shù)列,所以數(shù)列{an}的通項(xiàng)公式可求;(2)用反證法來證明:先假設(shè)數(shù)列{an}中的任意三項(xiàng)成等差數(shù)列,得到偶數(shù)=奇數(shù),所以假設(shè)錯誤,原結(jié)論正確;(3)證明,分和兩種情況,用放縮法來證明.
試題解析:(1),
(1)-(2)得又
為等比數(shù)列,首項(xiàng)為2,公比為2,
(2)假設(shè)中存在三項(xiàng)按某種順序成等差數(shù)列
單增即
同除以得
左端為偶數(shù),右端為奇數(shù),矛盾
所以任意三項(xiàng)不可能成等差數(shù)列
(3)
當(dāng)時, ,不等式成立
當(dāng)時,
綜上 ,對于一切有成立
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(A)已知數(shù)列滿足,其中, .
(1)求, , ,并猜想的表達(dá)式(不必寫出證明過程);
(2)由(1)寫出數(shù)列的前項(xiàng)和,并用數(shù)學(xué)歸納法證明.
(B)已知數(shù)列的前項(xiàng)和為,且滿足, .
(1)猜想的表達(dá)式,并用數(shù)學(xué)歸納法證明;
(2)設(shè), ,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)方程有兩個不等的負(fù)根, 方程無實(shí)根,若“”為真,“”為假,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中, 是線段上一點(diǎn).
點(diǎn).
(1)確定的位置,使得平面平面;
(2)若平面,設(shè)二面角的大小為,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中是自然對數(shù)的底數(shù).
(1)若曲線在處的切線方程為.求實(shí)數(shù)的值;
(2)①若時,函數(shù)既有極大值,又有極小值,求實(shí)數(shù)的取值范圍;
②若,若對一切正實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍(用表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),關(guān)于實(shí)數(shù)的不等式的解集為.
(1)當(dāng)時,解關(guān)于的不等式:;
(2)是否存在實(shí)數(shù),使得關(guān)于的函數(shù)的最小值為-5?若存在,求實(shí)數(shù)的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知圓錐曲線(為參數(shù))和定點(diǎn),、是此圓錐曲線的左、右焦點(diǎn),以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線的直角坐標(biāo)方程;
(2)經(jīng)過點(diǎn)且與直線垂直的直線交此圓錐曲線于、兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)求證:曲線在點(diǎn)處的切線過定點(diǎn);
(2)若是在區(qū)間上的極大值,但不是最大值,求實(shí)數(shù)的取值范圍;
(3)求證:對任意給定的正數(shù),總存在,使得在上為單調(diào)函數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com