【題目】如圖,在直三棱柱中, 是線段上一點.
點.
(1)確定的位置,使得平面平面;
(2)若平面,設(shè)二面角的大小為,求證:
【答案】(1)見解析(2)
【解析】試題分析:(1)當(dāng)時,可證明平面,再根據(jù)平面幾何知識求解即可;(2)以、、所在直線分別為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系,求出平面的一個法向量及平面的一個法向量,利用空間向量夾角余弦公式可得結(jié)果.
試題解析:(1)當(dāng)時,∵,∴由射影定理得,∴.
∵平面,∴.
∵,∴平面.
又平面,∴當(dāng)時,平面平面.
(2)以、、所在直線分別為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系,
則, , .
連接交于點,則為的中點.
∵平面平面,且平面,∴,∴為的中點.
∴, ,
設(shè)平面的法向量為,
則,且,
令,可取平面的一個法向量,
而平面的一個法向量為,
∴,∵二面角為銳角,
∴,又,∴.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:某污水處理廠要在一個矩形污水處理池()的池底水平鋪設(shè)污水凈化管道(是直角頂點)來處理污水,管道越長污水凈化效果越好,設(shè)計要求管道的的接口是的中點,分別落在線段上。已知米,米,記.
(1)試將污水凈化管道的長度表示為的函數(shù),并寫出定義域;
(2)若,求此時管道的長度;
(3)當(dāng)取何值時,污水凈化效果最好?并求出此時管道的長度。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于空間直角坐標(biāo)系中的一點,有下列說法:
①點到坐標(biāo)原點的距離為;
②的中點坐標(biāo)為;
③點關(guān)于軸對稱的點的坐標(biāo)為;
④點關(guān)于坐標(biāo)原點對稱的點的坐標(biāo)為;
⑤點關(guān)于坐標(biāo)平面對稱的點的坐標(biāo)為.
其中正確的個數(shù)是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在研究性學(xué)習(xí)中,關(guān)于三角形與三角函數(shù)知識的應(yīng)用(約定三內(nèi)角所對的邊分別是)得出如下一些結(jié)論:
(1)若是鈍角三角形,則;
(2)若是銳角三角形,則;
(3)在三角形中,若,則
(4)在中,若,則
其中錯誤命題的個數(shù)是 ( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l經(jīng)過點,則
(1)若直線l與x軸、y軸的正半軸分別交于A、B兩點,且△OAB的面積為4,求直線l的方程;
(2)若直線l與原點距離為2,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五棱錐中,平面平面,且.
(1)已知點在線段上,確定的位置,使得平面;
(2)點分別在線段上,若沿直線將四邊形向上翻折,與恰好重合,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn滿足,
(1)求數(shù)列{an}的通項公式;
(2)求證:數(shù)列{an}中的任意三項不可能成等差數(shù)列;
(3)設(shè),Tn為{bn}的前n項和,求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點處的切線方程和函數(shù)的極值;
(Ⅱ)若對任意的, ,都有成立,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,曲線, 極坐標(biāo)方程分別為, .
(Ⅰ)和交點的極坐標(biāo);
(Ⅱ)直線的參數(shù)方程為(為參數(shù)),與軸的交點為,且與交于, 兩點,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com