已知圓,直線,過上一點A作,使得,邊AB過圓心M,且B,C在圓M上,求點A縱坐標的取值范圍。

解析試題分析:因為點A在直線上,假設點的坐標.又因為直線AC與圓的位置關系為至少一個交點.即可表示為圓心到直線AC的距離小于或等于半徑.點到直線的距離由可得.從而得到一個關于的等式即可求得結論.
試題解析:由題意圓心,半徑,設,
因為直線和圓相交或相切,所以的距離,
,因此,                 6分

解得,故點的縱坐標的取值范圍是.        12分
考點:1.直線與圓的位置關系.2.解三角形的知識.3.二次不等式的解法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一個圓.
(1)求實數(shù)m的取值范圍;
(2)求該圓半徑r的取值范圍;
(3)求圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系xOy中,橢圓C=1(a>b>0)的離心率為,以坐標原點為圓心,橢圓C的短半軸長為半徑的圓與直線xy+2=0相切.

(1)求橢圓C的方程;
(2)已知點P(0,1),Q(0,2),設MN是橢圓C上關于y軸對稱的不同兩點,直線PMQN相交于點T.求證:點T在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點A(-3,0),B(3,0),動點P滿足|PA|=2|PB|.
(1)若點P的軌跡為曲線C,求此曲線的方程;
(2)若點Q在直線l1xy+3=0上,直線l2經過點Q且與曲線C只有一個公共點M,求|QM|的最小值.?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓經過坐標原點和點,且圓心在軸上.
(1)求圓的方程;
(2)設直線經過點,且與圓相交所得弦長為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓經過點,且圓心在直線上.
(1)求圓的方程;
(2)若點為圓上任意一點,求點到直線的距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知圓與圓外切于點,直線是兩圓的外公切線,分別與兩圓相切于兩點,是圓的直徑,過作圓的切線,切點為.

(Ⅰ)求證:三點共線;
(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點動點P滿足.
(Ⅰ)若點的軌跡為曲線,求此曲線的方程;
(Ⅱ)若點在直線上,直線經過點且與曲線有且只有一個公共點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=9.
(1)判斷兩圓的位置關系;
(2)求直線m的方程,使直線m被圓C1截得的弦長為4,與圓C截得的弦長是6.

查看答案和解析>>

同步練習冊答案