在平面直角坐標(biāo)系中,設(shè)A(-2,3),B(3,-2),沿軸把直角坐標(biāo)平面折成大小為的二面角后,這時(shí)則的大小為     

試題分析:作軸,垂足為點(diǎn),作軸,垂足為點(diǎn),再作,
連接,軸,軸,,就是二面角的平面角,而,所以為直角三角形,,所以,,由余弦定理可得,,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,ABEC=2,AEBE.

(1)求證:平面EAB⊥平面ABCD;
(2)求直線(xiàn)AE與平面CDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知在長(zhǎng)方體中,點(diǎn)為棱上任意一點(diǎn),,.

(Ⅰ)求證:平面平面;
(Ⅱ)若點(diǎn)為棱的中點(diǎn),點(diǎn)為棱的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

正三棱柱的所有棱長(zhǎng)都為4,D為的中點(diǎn).

(1)求證:⊥平面;
(2)求二面角余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐P—ABCD中,為邊長(zhǎng)為2的正三角形,底面ABCD為菱形,且平面PAB⊥平面ABCD,,E為PD點(diǎn)上一點(diǎn),滿(mǎn)足

(1)證明:平面ACE平面ABCD;
(2)求直線(xiàn)PD與平面ACE所成角正弦值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知向量
a
=(2,4,5),
b
=(3,x,y)分別是直線(xiàn)l1、l2的方向向量,若l1l2,則( 。
A.x=6,y=15B.x=3,y=
15
2
C.x=3,y=15D.x=6,y=
15
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若P是平面外一點(diǎn),A為平面內(nèi)一點(diǎn),為平面的一個(gè)法向量,則點(diǎn)P到平面的距離是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐中,是正三角形,四邊形是矩形,且平面平面,

(Ⅰ) 若點(diǎn)的中點(diǎn),求證:平面;
(II)若點(diǎn)為線(xiàn)段的中點(diǎn),求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

四棱錐中,,為菱形,且有,
,∠,中點(diǎn).
(Ⅰ)證明:;
(Ⅱ)求二面角的平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案