10.已知a,b是正實數(shù),命題p為“若lga>lgb,則a>b”,則( 。
A.命題p的逆命題為“若a>b,則lga>lgb”,且該命題為假命題
B.命題p的否命題為“若lga>lgb,則a≤b”,且該命題為真命題
C.命題p的逆否命題為“若a≤b,則lga≤lgb”,且該命題為真命題
D.命題p的否定為“若lga≤lgb,則a≤b”,且該命題為假命題

分析 利用四種命題之間的關(guān)系、對數(shù)函數(shù)的性質(zhì)即可判斷出真假.

解答 解:a,b是正實數(shù),命題p為“若lga>lgb,則a>b”,則命題p的逆命題為:若a>b>0,則lga>lgb,為真命題,因此A不正確.
命題p的否命題為:若lga≤lgb,則a≤b,為真命題,因此B不正確.
命題p的逆否命題為:若0<a≤b,則lga≤lgb,因此C為真命題,因此C正確.
命題p的否定題為:若lga>lgb,則a≤b,為假命題,因此D不正確.
故選:C.

點評 本題考查了四種命題之間的關(guān)系、對數(shù)函數(shù)的性質(zhì)、復合命題的應(yīng)用,考查了推理能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

20.已知一平面與一正方體的12條棱的所成角都等于α,則sinα=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2{x}^{3}-a{x}^{2}-1,x<0}\\{|x-3|+a,x≥0}\end{array}\right.$恰有兩個零點,則a的取值范圍是( 。
A.(-3,0)B.(-∞,0)C.(-∞,-3)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.等差數(shù)列{an}滿足a5=5,S7=28,數(shù)列{bn}的前n項和為Tn,其中b1=1,bn+1-Tn=1,
(1)求數(shù)列{an}及數(shù)列{bn}的通項公式
(2)若不等式(-1)nλ<$\frac{{a}_{1}}{_{1}}$+$\frac{{a}_{2}}{_{2}}$+…+$\frac{{a}_{n}}{_{n}}$+$\frac{n}{{2}^{n-1}}$對一切n∈N*恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)的定義域為R,f(x)=$\left\{\begin{array}{l}{x,0≤x≤1}\\{(\frac{1}{2})^{x}-1,-1≤x<0}\end{array}\right.$,且對任意的x∈R都有f(x+1)=f(x-1),若在區(qū)間[-1,3]上函數(shù)g(x)=f(x)-mx-m恰有三個不同零點,則實數(shù)m的取值范圍是( 。
A.(0,$\frac{1}{4}$]B.($\frac{1}{4}$,$\frac{1}{2}$)C.(0,$\frac{1}{2}$]D.[$\frac{1}{4}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.有窮數(shù)列1,1+2,1+2+4,…,1+2+4+…+2n-1所有項的和為2n+1-n-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.己知a>2,p=a+$\frac{1}{a-2}$,q=2${\;}^{-{a}^{2}+4a-2}$,則( 。
A.p>qB.p<qC.p≥qD.p≤q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設(shè)集合A={x|-2≤x≤5},B={x|x2-3mx+2m2-m-1<0}.
(1)當x∈Z時,求A的非空真子集的個數(shù).
(2)若B=∅,求m的取值范圍.
(3)若A?B,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在平面直角坐標系xOy中,設(shè)點A(-1,2)在矩陣$M=[{\begin{array}{l}{-1}&0\\ 0&1\end{array}}]$對應(yīng)的變換作用下得到點A′,將點B(3,4)繞點A′逆時針旋轉(zhuǎn)90°得到點B′,求點B′的坐標.

查看答案和解析>>

同步練習冊答案