【題目】為了解高三年級學生寒假期間的學習情況,某學校抽取了甲、乙兩班作為對象,調(diào)查這兩個班的學生在寒假期間平均每天學習的時間(單位:小時),統(tǒng)計結(jié)果繪成頻率分布直方圖(如圖).已知甲、乙兩班學生人數(shù)相同,甲班學生平均每天學習時間在區(qū)間的有8人.

(I)求直方圖中的值及甲班學生平均每天學習時間在區(qū)間的人數(shù);

(II)從甲、乙兩個班平均每天學習時間大于10個小時的學生中任取4人參加測試,設(shè)4人中甲班學生的人數(shù)為,求的分布列和數(shù)學期望.

【答案】(I)3;(II).

【解析】試題分析:(I)由直方圖能求出的值及甲班學生每天平均學習時間在區(qū)間的人數(shù);(II)由已知得的所有可能取值為,分別求出相應(yīng)的概率,由此能求出的分布列和數(shù)學期望.

試題解析:(I) 由直方圖知, ,解得,因為甲班學習時間在區(qū)間的有8人,

所以甲班的學生人數(shù)為,所以甲、乙兩班人數(shù)均為40人.

所以甲班學習時間在區(qū)間的人數(shù)為(人).

(II)乙班學習時間在區(qū)間的人數(shù)為(人).

由⑴知甲班學習時間在區(qū)間的人數(shù)為3人,

在兩班中學習時間大于10小時的同學共7人, 的所有可能取值為0,1,2,3.

, ,

,

所以隨機變量的分布列為:

0

1

2

3

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐S﹣ABC中,AB⊥BC,AB=BC= ,SA=SC=2,二面角S﹣AC﹣B的余弦值是 ,若S、A、B、C都在同一球面上,則該球的表面積是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從甲地到乙地要經(jīng)過3個十字路口,設(shè)各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為.

(Ⅰ)設(shè)表示一輛車從甲地到乙地遇到紅燈的個數(shù),求隨機變量的分布列和數(shù)學期望;

(Ⅱ)若有2輛車獨立地從甲地到乙地,求這2輛車共遇到1個紅燈的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=48x﹣x3 , x∈[﹣3,5]
(1)求單調(diào)區(qū)間;
(2)求最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形為菱形, , 相交于點 平面, 平面, 中點.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的正弦值;

(Ⅲ)當直線與平面所成角為時,求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分所得,則該幾何體的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求a;

(2)證明:存在唯一的極大值點,且.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l經(jīng)過點(1,﹣2),且與直線m:4x﹣3y+1=0平行;
(1)求直線l的方程;
(2)求直線l被圓x2+y2=9所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校對高一年級學生寒假參加社區(qū)服務(wù)的次數(shù)進行了統(tǒng)計,隨機抽取了M名學生作為樣本,得到這M名學生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計表和頻率分布直方圖如圖:

分組

頻數(shù)

頻率

[10,15)

20

0.25

[15,20)

50

n

[20,25)

m

p

[25,30)

4

0.05

合計

M

N


(1)求表中n,p的值和頻率分布直方圖中a的值,并根據(jù)頻率分布直方圖估計該校高一學生寒假參加社區(qū)服務(wù)次數(shù)的中位數(shù);
(2)如果用分層抽樣的方法從樣本服務(wù)次數(shù)在[10,15)和[25,30)的人中共抽取6人,再從這6人中選2人,求2人服務(wù)次數(shù)都在[10,15)的概率.

查看答案和解析>>

同步練習冊答案