【題目】某校對高一年級(jí)學(xué)生寒假參加社區(qū)服務(wù)的次數(shù)進(jìn)行了統(tǒng)計(jì),隨機(jī)抽取了M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計(jì)表和頻率分布直方圖如圖:
分組 | 頻數(shù) | 頻率 |
[10,15) | 20 | 0.25 |
[15,20) | 50 | n |
[20,25) | m | p |
[25,30) | 4 | 0.05 |
合計(jì) | M | N |
(1)求表中n,p的值和頻率分布直方圖中a的值,并根據(jù)頻率分布直方圖估計(jì)該校高一學(xué)生寒假參加社區(qū)服務(wù)次數(shù)的中位數(shù);
(2)如果用分層抽樣的方法從樣本服務(wù)次數(shù)在[10,15)和[25,30)的人中共抽取6人,再從這6人中選2人,求2人服務(wù)次數(shù)都在[10,15)的概率.
【答案】
(1)解:∵20÷M=0.25,∴M=80,∴ , ,
,
中位數(shù)位于區(qū)間[15,20),設(shè)中位數(shù)為(15+x),
則0.125x=0.25,所以x=2,所以學(xué)生參加社區(qū)服務(wù)次數(shù)的中位數(shù)為17次.
(2)解:由題意知樣本服務(wù)次數(shù)在[10,15)有20人,樣本服務(wù)次數(shù)在[25,30)有4人.
如果用分層抽樣的方法從樣本服務(wù)次數(shù)在[10,15)和[25,30)的人中共抽取6人,
則抽取的服務(wù)次數(shù)在[10,15)和[25,30)的人數(shù)分別為: 和 .
記服務(wù)次數(shù)在[10,15)為a1,a2,a3,a4,a5,在[25,30)的為b.
從已抽取的6人中任選兩人的所有可能為:
共15種.
設(shè)“2人服務(wù)次數(shù)都在[10,15)”為事件A,則事件A包括:
共10種,
所以 .
【解析】(1)利用頻率分布表求得M,p、n的值,再利用中位數(shù)的定義求得學(xué)生參加社區(qū)服務(wù)次數(shù)的中位數(shù).(2)先求出抽取的服務(wù)次數(shù)在[10,15)和[25,30)的人數(shù),再利用列舉法求得從已抽取的6人中任選兩人的所有可能共有15種,找出其中“2人服務(wù)次數(shù)都在[10,15)”的事件A的個(gè)數(shù)為10種,從而求得事件A的概率.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解頻率分布直方圖的相關(guān)知識(shí),掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解高三年級(jí)學(xué)生寒假期間的學(xué)習(xí)情況,某學(xué)校抽取了甲、乙兩班作為對象,調(diào)查這兩個(gè)班的學(xué)生在寒假期間平均每天學(xué)習(xí)的時(shí)間(單位:小時(shí)),統(tǒng)計(jì)結(jié)果繪成頻率分布直方圖(如圖).已知甲、乙兩班學(xué)生人數(shù)相同,甲班學(xué)生平均每天學(xué)習(xí)時(shí)間在區(qū)間的有8人.
(I)求直方圖中的值及甲班學(xué)生平均每天學(xué)習(xí)時(shí)間在區(qū)間的人數(shù);
(II)從甲、乙兩個(gè)班平均每天學(xué)習(xí)時(shí)間大于10個(gè)小時(shí)的學(xué)生中任取4人參加測試,設(shè)4人中甲班學(xué)生的人數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某職稱晉級(jí)評定機(jī)構(gòu)對參加某次專業(yè)技術(shù)考試的100人的成績進(jìn)行了統(tǒng)計(jì),繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級(jí)成功,否則晉級(jí)失。M分為100分).
晉級(jí)成功 | 晉級(jí)失敗 | 合計(jì) | |
男 | 16 | ||
女 | 50 | ||
合計(jì) |
(Ⅰ)求圖中的值;
(Ⅱ)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有85%的把握認(rèn)為“晉級(jí)成功”與性別有關(guān)?
(Ⅲ)將頻率視為概率,從本次考試的所有人員中,隨機(jī)抽取4人進(jìn)行約談,記這4人中晉級(jí)失敗的人數(shù)為,求的分布列與數(shù)學(xué)期望.
(參考公式:,其中)
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin ωxcos ωx-sin2ωx+1(ω>0)圖象的相鄰兩條對稱軸之間的距離為.
(Ⅰ)求ω的值及函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)如圖,在銳角三角形ABC中有f(B)=1,若在線段BC上存在一點(diǎn)D使得AD=2,且AC=,CD=-1,求三角形ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線 的參數(shù)方程為 ,曲線 的參數(shù)方程為 ,設(shè)直線 與曲線 交于兩點(diǎn) ,
(1)求 ;
(2)設(shè) 為曲線 上的一點(diǎn),當(dāng) 的面積取最大值時(shí),求點(diǎn) 的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線 (t為參數(shù)), ( 為參數(shù)).
(1)化 , 的方程為普通方程,并說明它們分別表示什么曲線;
(2)過曲線 的左頂點(diǎn)且傾斜角為 的直線 交曲線 于 兩點(diǎn),求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓錐曲線 為參數(shù))和定點(diǎn) F1 , F2是圓錐曲線的左右焦點(diǎn)。
(1)求經(jīng)過點(diǎn)F2且垂直于直線AF1的直線l的參數(shù)方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求直線AF2的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答
(1)設(shè)全集為R,A={x|3<x<7},B={x|4<x<10},求R(A∪B)及(RA)∩B.
(2)C={x|a﹣4≤x≤a+4},且A∩C=A,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)當(dāng)a=2時(shí),求曲線在點(diǎn)處的切線方程;
(II)設(shè)函數(shù),z.x.x.k討論的單調(diào)性并判斷有無極值,有極值時(shí)求出極值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com