A. | [$\frac{1}{3}$,1) | B. | [$\frac{1}{3}$,$\frac{2}{3}$) | C. | (0,$\frac{2}{3}$) | D. | ($\frac{2}{3}$,1) |
分析 由題意可知f(x)在兩段上均為增函數(shù),且f(x)在(0,+∞)上的最小值大于或等于f(0),作出|f(x)|和y=x+1的圖象,根據(jù)交點(diǎn)個(gè)數(shù)判斷3a與2的大小關(guān)系,列出不等式組解出.
解答 解:∵f(x)是R上的單調(diào)遞增函數(shù),
∴y=x2+(4a-1)x+3a-1在(0,+∞)上單調(diào)遞增,y=($\frac{1}{a}$)x-1在(-∞,0]上單調(diào)遞增,
且f(x)在(0,+∞)上的最小值大于或等于f(0).
即$\left\{\begin{array}{l}{\frac{1}{a}>1}\\{\frac{1-4a}{2}≤0}\\{3a-1≥0}\end{array}\right.$解得$\frac{1}{3}≤a<1$,
作出y=|f(x)|和y=x+1的函數(shù)草圖如圖所示:
由圖象可知|f(x)|=x+1在(-∞,0)上有且只有一解,
∵|f(x)|=x+1恰有兩個(gè)不相等的實(shí)數(shù)解,
∴x2+(4a-1)x+3a-1=x+1在(0,+∞)上只有1解,
即x2+(4a-2)x+3a-2=0在(0,+∞)上只有1解,
$\left\{\begin{array}{l}{△=(4a-2)^{2}-4(3a-2)=0}\\{-\frac{4a-2}{2}>0}\end{array}\right.$或$\left\{\begin{array}{l}{△=(4a-2)^{2}-4(3a-2)>0}\\{3a-2<0}\end{array}\right.$
解得a$<\frac{2}{3}$.
綜上,a的取值范圍是:[$\frac{1}{3}$,$\frac{2}{3}$),
故選:B
點(diǎn)評(píng) 本題考查了分段函數(shù)的單調(diào)性,函數(shù)零點(diǎn)的個(gè)數(shù)判斷,結(jié)合函數(shù)圖象判斷端點(diǎn)值的大小是關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
x | 2 | 3 | 4 | 5 | 6 | 7 |
y | 4.1 | 2.5 | -0.5 | 0.5 | -2.0 | -3.0 |
A. | $\hat a>0,\hat b>0$ | B. | $\hat a>0,\hat b<0$ | C. | $\hat a<0,\hat b>0$ | D. | $\hat a<0,\hat b<0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 10 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com