【題目】某校為研究學生語言學科的學習情況,現(xiàn)對高二200名學生英語和語文某次考試成績進行抽樣分析.將200名學生編號為001,002,…,200,采用系統(tǒng)抽樣的方法等距抽取10名學生,將10名學生的兩科成績(單位:分)繪成折線圖如下:
(Ⅰ)若第一段抽取的學生編號是006,寫出第五段抽取的學生編號;
(Ⅱ)在這兩科成績差超過20分的學生中隨機抽取2人進行訪談,求2人成績均是語文成績高于英語成績的概率;
(Ⅲ)根據(jù)折線圖,比較該校高二年級學生的語文和英語兩科成績,寫出你的結論和理由.
【答案】解:(Ⅰ)第一段抽取的學生編號是006,間隔為20,第五段抽取的學生編號為086;
(Ⅱ)這兩科成績差超過20分的學生,共5人,語文成績高于英語成績,有3人,從中隨機抽取2人進行訪談,有 =10種,2人成績均是語文成績高于英語成績,有3種,故2人成績均是語文成績高于英語成績的概率是 ;
(Ⅲ)根據(jù)折線圖,可以估計該校高二年級學生的語文成績平均分高,語文成績相對更穩(wěn)定
【解析】(Ⅰ)第一段抽取的學生編號是006,間隔為20,即可寫出第五段抽取的學生編號;(Ⅱ)確定基本事件的個數(shù),可得結論;(Ⅲ)根據(jù)折線圖,可以估計該校高二年級學生的語文成績平均分高,語文成績相對更穩(wěn)定.
【考點精析】解答此題的關鍵在于理解系統(tǒng)抽樣方法的相關知識,掌握把總體的單位進行排序,再計算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本;第一個樣本采用簡單隨機抽樣的辦法抽。
科目:高中數(shù)學 來源: 題型:
【題目】某大學為調(diào)研學生在A,B兩家餐廳用餐的滿意度,從在A,B兩家餐廳都用過餐的學生中隨機抽取了100人,每人分別對這兩家餐廳進行評分,滿分均為60分.整理評分數(shù)據(jù),將分數(shù)以10為組距分成6組:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐廳分數(shù)的頻率分布直方圖,和B餐廳分數(shù)的頻數(shù)分布表:
B餐廳分數(shù)頻數(shù)分布表 | |
分數(shù)區(qū)間 | 頻數(shù) |
[0,10) | 2 |
[10,20) | 3 |
[20,30) | 5 |
[30,40) | 15 |
[40,50) | 40 |
[50,60] | 35 |
定義學生對餐廳評價的“滿意度指數(shù)”如下:
分數(shù) | [0,30) | [30,50) | [50,60] |
滿意度指數(shù) | 0 | 1 | 2 |
(Ⅰ)在抽樣的100人中,求對A餐廳評價“滿意度指數(shù)”為0的人數(shù);
(Ⅱ)從該校在A,B兩家餐廳都用過餐的學生中隨機抽取1人進行調(diào)查,試估計其對A餐廳評價的“滿意度指數(shù)”比對B餐廳評價的“滿意度指數(shù)”高的概率;
(Ⅲ)如果從A,B兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ) (A>0,ω>0,0<φ<π),其導函數(shù)f′(x)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( )
A.f(x)=4sin( x+ π)
B.f(x)=4sin( x+ )
C.f(x)=4sin( x+ )
D.f(x)=4sin( x+ )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓G: 的兩個焦點分別為F1和F2 , 短軸的兩個端點分別為B1和B2 , 點P在橢圓G上,且滿足|PB1|+|PB2|=|PF1|+|PF2|.當b變化時,給出下列三個命題: ①點P的軌跡關于y軸對稱;
②存在b使得橢圓G上滿足條件的點P僅有兩個;
③|OP|的最小值為2,
其中,所有正確命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) 下列四個命題: ①f(f(1))>f(3);
②x0∈(1,+∞), ;
③f(x)的極大值點為x=1;
④x1 , x2∈(0,+∞),|f(x1)﹣f(x2)|≤1
其中正確的有 . (寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學高一、高二年級各有8個班,學校調(diào)查了春學期各班的文學名著閱讀量(單位:本),并根據(jù)調(diào)查結果,得到如下所示的莖葉圖:
為鼓勵學生閱讀,在高一、高二兩個兩個年級中,學校將閱讀量高于本年級閱讀量平均數(shù)的班級命名為該年級的“書香班級”.
(1)當a=4時,記高一年級“書香班級”數(shù)為m,高二年級的“書香班級”數(shù)為n,比較m,n的大小關系;
(2)在高一年級8個班級中,任意選取兩個,求這兩個班級均是“書香班級”的概率;
(3)若高二年級的“書香班級”數(shù)多于高一年級的“書香班級”數(shù),求a的值(只需寫出結論)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將一張邊長為12cm的正方形紙片按如圖(1)所示陰影部分裁去四個全等的等腰三角形,將余下部分沿虛線折疊并拼成一個有底的正四棱錐模型,如圖(2)所示放置.如果正四棱錐的主視圖是等邊三角形,如圖(3)所示,則正四棱錐的體積是( )
A. cm3
B. cm3
C. cm3
D. cm3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)若 ,求函數(shù) 的極值;
(2)設函數(shù) ,求函數(shù) 的單調(diào)區(qū)間;
(3)若在區(qū)間 上不存在 ,使得 成立,求實數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=log2(3+x)﹣log2(3﹣x),
(1)求函數(shù)f(x)的定義域,并判斷函數(shù)f(x)的奇偶性;
(2)已知f(sinα)=1,求α的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com