【題目】某中學(xué)高一、高二年級(jí)各有8個(gè)班,學(xué)校調(diào)查了春學(xué)期各班的文學(xué)名著閱讀量(單位:本),并根據(jù)調(diào)查結(jié)果,得到如下所示的莖葉圖:
為鼓勵(lì)學(xué)生閱讀,在高一、高二兩個(gè)兩個(gè)年級(jí)中,學(xué)校將閱讀量高于本年級(jí)閱讀量平均數(shù)的班級(jí)命名為該年級(jí)的“書(shū)香班級(jí)”.
(1)當(dāng)a=4時(shí),記高一年級(jí)“書(shū)香班級(jí)”數(shù)為m,高二年級(jí)的“書(shū)香班級(jí)”數(shù)為n,比較m,n的大小關(guān)系;
(2)在高一年級(jí)8個(gè)班級(jí)中,任意選取兩個(gè),求這兩個(gè)班級(jí)均是“書(shū)香班級(jí)”的概率;
(3)若高二年級(jí)的“書(shū)香班級(jí)”數(shù)多于高一年級(jí)的“書(shū)香班級(jí)”數(shù),求a的值(只需寫(xiě)出結(jié)論)
【答案】
(1)解:當(dāng)a=4時(shí),
高一年級(jí)閱讀量平均數(shù)為: (11+14+18+22+23+25+41)=24,∴m=3,
高一年級(jí)閱讀量平均數(shù)為: (10+16+20+21+22+23+31+34)=22.13,∴n=3.
∴m=n
(2)解:在高一年級(jí)8個(gè)班級(jí)中,任意選取兩個(gè),
基本事件總數(shù)n= =28,
由(1)知高一年級(jí)的8個(gè)班級(jí)中,“書(shū)香班級(jí)”中有3個(gè),
∴這兩個(gè)班級(jí)均是“書(shū)香班級(jí)”的取法有m= ,
這兩個(gè)班級(jí)均是“書(shū)香班級(jí)”的概率p=
(3)解:∵高二年級(jí)的“書(shū)香班級(jí)”數(shù)多于高一年級(jí)的“書(shū)香班級(jí)”數(shù),
∴高一年級(jí)的“書(shū)香班級(jí)”閱讀量平均數(shù)小于22,
由此得到a的可能取值為0,1,2
【解析】(1)當(dāng)a=4時(shí),求出高一年級(jí)閱讀量平均數(shù)和高一年級(jí)閱讀量平均數(shù),由此能比較m,n的大。2)在高一年級(jí)8個(gè)班級(jí)中,任意選取兩個(gè),基本事件總數(shù)n= =28,由(1)知高一年級(jí)的8個(gè)班級(jí)中,“書(shū)香班級(jí)”中有3個(gè),由此能求出這兩個(gè)班級(jí)均是“書(shū)香班級(jí)”的概率.(3)由已知得高一年級(jí)的“書(shū)香班級(jí)”閱讀量平均數(shù)小于22,由此能得到a的可能取值.
【考點(diǎn)精析】本題主要考查了莖葉圖的相關(guān)知識(shí)點(diǎn),需要掌握莖葉圖又稱(chēng)“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個(gè)主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個(gè)主干后面的幾個(gè)數(shù),每個(gè)數(shù)具體是多少才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1中,點(diǎn)P是線(xiàn)段BD1上的動(dòng)點(diǎn).當(dāng)△PAC在平面DC1 , BC1 , AC上的正投影都為三角形時(shí),將它們的面積分別記為S1 , S2 , S3 .
(i)當(dāng)BP= 時(shí),S1S2(填“>”或“=”或“<”);
(ii) S1+S2+S3的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:函數(shù)f(x)=x3+ax2+x在R上是增函數(shù);命題q:若函數(shù)g(x)=ex﹣x+a在區(qū)間[0,+∞)沒(méi)有零點(diǎn).
(1)如果命題p為真命題,求實(shí)數(shù)a的取值范圍;
(2)命題“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于無(wú)窮數(shù)列{an},記T={x|x=aj﹣ai , i<j},若數(shù)列{an}滿(mǎn)足:“存在t∈T,使得只要am﹣ak=t(m,k∈N*且m>k),必有am+1﹣ak+1=t”,則稱(chēng)數(shù)列{an}具有性質(zhì)P(t). (Ⅰ)若數(shù)列{an}滿(mǎn)足 判斷數(shù)列{an}是否具有性質(zhì)P(2)?是否具有性質(zhì)P(4)?
(Ⅱ)求證:“T是有限集”是“數(shù)列{an}具有性質(zhì)P(0)”的必要不充分條件;
(Ⅲ)已知{an}是各項(xiàng)為正整數(shù)的數(shù)列,且{an}既具有性質(zhì)P(2),又具有性質(zhì)P(5),求證:存在整數(shù)N,使得aN , aN+1 , aN+2 , …,aN+k , …是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為研究學(xué)生語(yǔ)言學(xué)科的學(xué)習(xí)情況,現(xiàn)對(duì)高二200名學(xué)生英語(yǔ)和語(yǔ)文某次考試成績(jī)進(jìn)行抽樣分析.將200名學(xué)生編號(hào)為001,002,…,200,采用系統(tǒng)抽樣的方法等距抽取10名學(xué)生,將10名學(xué)生的兩科成績(jī)(單位:分)繪成折線(xiàn)圖如下:
(Ⅰ)若第一段抽取的學(xué)生編號(hào)是006,寫(xiě)出第五段抽取的學(xué)生編號(hào);
(Ⅱ)在這兩科成績(jī)差超過(guò)20分的學(xué)生中隨機(jī)抽取2人進(jìn)行訪(fǎng)談,求2人成績(jī)均是語(yǔ)文成績(jī)高于英語(yǔ)成績(jī)的概率;
(Ⅲ)根據(jù)折線(xiàn)圖,比較該校高二年級(jí)學(xué)生的語(yǔ)文和英語(yǔ)兩科成績(jī),寫(xiě)出你的結(jié)論和理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐S﹣ABCD的底面ABCD是正方形,各側(cè)棱長(zhǎng)與底面的邊長(zhǎng)均相等,M為SA的中點(diǎn),則直線(xiàn)BM與SC所成的角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正△ABC三個(gè)頂點(diǎn)都在半徑為2的球面上,球心O到平面ABC的距離為1,點(diǎn)E是線(xiàn)段AB的中點(diǎn),過(guò)點(diǎn)E作球O的截面,則截面面積的最小值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a為常數(shù),函數(shù)f(x)=x(lnx﹣2ax)有兩個(gè)極值點(diǎn),則a的取值范圍為( 。
A.(﹣∞,1)
B.
C.(0,1)
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在[﹣2,2]上的奇函數(shù),當(dāng)x∈(0,2]時(shí),f(x)=2x﹣1,函數(shù)g(x)=x2﹣2x+m.如果對(duì)于x1∈[﹣2,2],x2∈[﹣2,2],使得g(x2)=f(x1),則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com