【題目】已知圓心為的圓過點,且與直線相切于點

1)求圓的方程;

2)已知點,且對于圓上任一點,線段上存在異于點的一點,使得為常數(shù)),試判斷使的面積等于4的點有幾個,并說明理由。

【答案】(1)(2)使的面積等于4的點2

【解析】

1)利用條件設(shè)圓的標(biāo)準(zhǔn)方程,由圓過點t,確定圓方程.

2)設(shè),由確定阿波羅尼斯圓方程,與圓C為同一圓,可得,求出N點的坐標(biāo),建立ON方程,,再利用面積求點P到直線的距離,

判斷與ON平行且距離為的兩條直線與圓C的位置關(guān)系可得結(jié)論.

1)依題意可設(shè)圓心坐標(biāo)為,則半徑為,

的方程可寫成

因為圓過點,∴,∴

則圓的方程為。

2)由題知,直線的方程為,設(shè)滿足題意,

設(shè),則,所以,

,

因為上式對任意恒成立,所以,且,

解得(舍去,與重合)。

所以點,則,直線方程為

到直線的距離,

若存在點使的面積等于4,則

①當(dāng)點在直線的上方時,點到直線的距離的取值范圍為

∴當(dāng)點在直線的上方時,使的面積等于4的點有2個;

②當(dāng)點在直線的下方時,點到直線的距離的取值范圍為,

∴當(dāng)點在直線的下方時,使的面積等于4的點有0個,

綜上可知,使的面積等于4的點2個。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓為參數(shù))與軸正半軸,軸正半軸的交點分別為,動點是橢圓上任一點,則面積的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為正整數(shù),集合),對于集合中的任意元素,記.

1)當(dāng)時,若,,求的值;

2)當(dāng)時,設(shè)的子集,且滿足:對于中的任意元素,當(dāng)相同時,是奇數(shù),當(dāng)、不同時,是偶數(shù),求集合中元素個數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,過點的直線的參數(shù)方程為為參數(shù)).以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線與曲線相交于, 兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題方程表示焦點在軸上的橢圓,命題雙曲線的離心率,若“”為假命題,“”為真命題,則的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】符號表示不大于的最大整數(shù)(,例如:

1)已知,分別求兩方程的解集;

2)設(shè)方程的解集為,集合,若,求的取值范圍.

3)在(2)的條件下,集合,是否存在實數(shù),,若存在,請求出實數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點P(22),圓Cx2y28y0,過點P的動直線l與圓C交于A,B兩點,線段AB的中點為M,O為坐標(biāo)原點.

(1)M的軌跡方程;

(2)當(dāng)|OP||OM|時,求l的方程及△POM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合,若AB=B,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中有如下三個結(jié)論:點P在曲線C上,則點P的極坐標(biāo)滿足曲線C的極坐標(biāo)方程;tan θ=1(ρ≥0)與θ≥0)表示同一條曲線;ρ=3與ρ=-3表示同一條曲線.其中正確的是(  )

A. ①③ B. C. ②③ D.

查看答案和解析>>

同步練習(xí)冊答案