【題目】符號表示不大于的最大整數(shù)(),例如:
(1)已知,分別求兩方程的解集;
(2)設(shè)方程的解集為,集合,若,求的取值范圍.
(3)在(2)的條件下,集合,是否存在實數(shù),,若存在,請求出實數(shù)的取值范圍;若不存在,請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年6月14日,第二十一屆世界杯尼球賽在俄羅斯拉開了帷幕,某大學(xué)在二年級作了問卷調(diào)查,從該校二年級學(xué)生中抽取了人進行調(diào)查,其中女生中對足球運動有興趣的占,而男生有人表示對足球運動沒有興趣.
(1)完成列聯(lián)表,并回答能否有的把握認為“對足球是否有興趣與性別有關(guān)”?
有興趣 | 沒有興趣 | 合計 | |
男 | |||
女 | |||
合計 |
(2)若將頻率視為概率,現(xiàn)再從該校二年級全體學(xué)生中,采用隨機抽樣的方法每飲抽取名學(xué)生,抽取次,記被抽取的名學(xué)生中對足球有興趣的人數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列和數(shù)學(xué)期望.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一款手機,每部購買費用是5000元,每年網(wǎng)絡(luò)費和電話費共需1000元;每部手機第一年不需維修,第二年維修費用為100元,以后每一年的維修費用均比上一年增加100元.設(shè)該款手機每部使用年共需維修費用元,總費用元.(總費用購買費用網(wǎng)絡(luò)費和電話費維修費用)
(1)求函數(shù)、的表達式:
(2)這款手機每部使用多少年時,它的年平均費用最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1: +y2=1,橢圓C2以C1的長軸為短軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設(shè)O為坐標原點,點A,B分別在橢圓C1和C2上, =2 ,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心為的圓過點,且與直線相切于點。
(1)求圓的方程;
(2)已知點,且對于圓上任一點,線段上存在異于點的一點,使得(為常數(shù)),試判斷使的面積等于4的點有幾個,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】足球,有“世界第一運動的美譽,是全球體育界最具影響力的單項體育運動之一.足球傳球是足球運動技術(shù)之一,是比賽中組織進攻、組織戰(zhàn)術(shù)配合和進行射門的主要手段.足球截球也是足球運動技術(shù)的一種,是將對方控制或傳出的球占為己有,或破壞對方對球的控制的技術(shù),是比賽中由守轉(zhuǎn)攻的主要手段.這兩種運動技術(shù)都需要球運動員的正確判斷和選擇.現(xiàn)有甲、乙兩隊進行足球友誼賽,A、B兩名運動員是甲隊隊員,C是乙隊隊員,B在A的正西方向,A和B相距20m,C在A的正北方向,A和C相距14m.現(xiàn)A沿北偏西60°方向水平傳球,球速為10m/s,同時B沿北偏西30°方向以10m/s的速度前往接球,C同時也以10m/s的速度前去截球.假設(shè)球與B、C都在同一平面運動,且均保持勻速直線運動.
(1)若C沿南偏西60°方向前去截球,試判斷B能否接到球?請說明理由.
(2)若C改變(1)的方向前去截球,試判斷C能否球成功?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)討論函數(shù)在定義域內(nèi)的極值點的個數(shù);
(2)若函數(shù)在處取得極值,且對任意, 恒成立,求實數(shù)的取值范圍;
(3)當時,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩名學(xué)生中選拔一人參加射箭比賽,為此需要對他們的射箭水平進行測試.現(xiàn)這兩名學(xué)生在相同條件下各射箭10次,命中的環(huán)數(shù)如下:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)計算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標準差;
(2)比較兩個人的成績,然后決定選擇哪名學(xué)生參加射箭比賽.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com