斜率為1的直線過拋物線的焦點(diǎn),與拋物線交于兩點(diǎn)A、B將直線AB接向量平移得直線的動(dòng)點(diǎn),M為拋物線弧AB上的動(dòng)點(diǎn)
①若,求拋物線方程
②求的最大值
③求的最小值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
13 |
4 |
5 |
2 |
1 |
k1k2 |
1 |
k2k3 |
1 |
kn-1kn |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
13 |
4 |
5 |
2 |
1 |
k1k2 |
1 |
k2k3 |
1 |
knkn+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)有拋物線列C1,C2,…,Cn,…,拋物線Cn(n∈N*)的對(duì)稱軸平行于y軸,頂點(diǎn)為(an,bn),且通過點(diǎn)Dn(0,n2+1),過點(diǎn)Dn且與拋物線Cn相切的直線的斜率為kn,求極限.
(3)設(shè)集合X={x|x=2an,n∈N*},Y={y|y=4bn,n∈N*},若等差數(shù)列{Cn}的任一項(xiàng)Cn∈X∩Y,C1是X∩Y中的最大數(shù),且-265<C10<-125,求{Cn}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆江蘇省蘇州市紅心中學(xué)高三摸底考試數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)在直角坐標(biāo)平面上有一點(diǎn)列 對(duì)一切正整數(shù)n,點(diǎn)Pn在函數(shù)的圖象上,且Pn的橫坐標(biāo)構(gòu)成以為首項(xiàng),-1為公差的等差數(shù)列{xn}.
(1)求點(diǎn)Pn的坐標(biāo);
(2)設(shè)拋物線列C1,C2,C3,…,Cn,…中的每一條的對(duì)稱軸都垂直于x軸,拋物線Cn的頂點(diǎn)為Pn,且過點(diǎn)Dn(0,).記與拋物線Cn相切于點(diǎn)Dn的直線的斜率為kn,求
(3)設(shè)等差數(shù)列的任一項(xiàng),其中是中的最大數(shù),,求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省蘇州市高三摸底考試數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)在直角坐標(biāo)平面上有一點(diǎn)列 對(duì)一切正整數(shù)n,點(diǎn)Pn在函數(shù)的圖象上,且Pn的橫坐標(biāo)構(gòu)成以為首項(xiàng),-1為公差的等差數(shù)列{xn}.
(1)求點(diǎn)Pn的坐標(biāo);
(2)設(shè)拋物線列C1,C2,C3,…,Cn,…中的每一條的對(duì)稱軸都垂直于x軸,拋物線Cn的頂點(diǎn)為Pn,且過點(diǎn)Dn(0,).記與拋物線Cn相切于點(diǎn)Dn的直線的斜率為kn,求
(3)設(shè)等差數(shù)列的任一項(xiàng),其中是中的最大數(shù),,求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com