函數(shù)f(x)=
x+1
x
的最小值是
 
考點:函數(shù)的最值及其幾何意義
專題:函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:利用換元法,結(jié)合基本不等式的性質(zhì)即可得到結(jié)論.
解答: 解:函數(shù)的定義域為(0,+∞),
f(x)=
x+1
x
=
x
+
1
x

∴設(shè)t=
x
,則t>0,
則函數(shù)等價為y=t+
1
t
≥2
t•
1
t
=2
,
當且僅當t=
1
t
時取“=”,此時t=1,即x=1時取等號,
故函數(shù)的最小值為2,
故答案為:2
點評:本題主要考查函數(shù)最值的求解,利用換元法結(jié)合基本不等式進行求解是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于D.E,F(xiàn)分別為弦AB與弦AC上的點,B,E,F(xiàn),C四點共圓,且BC•AE=DC•AF.
(1)證明:CA是△ABC外接圓的直徑;
(2)若DB=BE=EA,求過B,E,F(xiàn),C四點的圓的半徑與△ABC外接圓半徑的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,滿足Sn=an+1-2n+1+1,(n∈N*),且a1=1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=
an+1-1
an+1+2
,數(shù)列{bn}的前n項和為Tn,證明:對一切正整數(shù)n,都有n-
3
2
Tn<n-
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

近年來,我國許多地方出現(xiàn)霧霾天氣,影響了人們的出行、工作與健康.其形成與 PM2.5有關(guān).PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.PM2.5日均值越小,空氣質(zhì)量越好.為加強生態(tài)文明建設(shè),我國國家環(huán)保部于2012年2月29日,發(fā)布了《環(huán)境空氣質(zhì)量標準》見下表:
PM2.5日均值k(微克)空氣質(zhì)量等級
k≤35一級
35<k≤75二級
k>75超標
某環(huán)保部門為了了解甲、乙兩市的空氣質(zhì)量狀況,在某月中分別隨機抽取了甲、乙兩市6天的 PM2.5日均值作為樣本,樣本數(shù)據(jù)莖葉圖如圖所示(十位為莖,個位為葉).
(Ⅰ)求甲、乙兩市PM2.5日均值的樣本平均數(shù),據(jù)此判斷該月中哪個市的空氣質(zhì)量較好;
(Ⅱ)若從甲市這6天的樣本數(shù)據(jù)中隨機抽取兩天的數(shù)據(jù),求恰有一天空氣質(zhì)量等級為一級的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次不等式ax2+bx+c>0的解集為{x|-1<x<2},則關(guān)于x的不等式cx2-bx+a<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠A=90°,AB=3,AC=4,則
CA
CB
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3 x2-2x的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,AP⊥BD,垂足為P,AP=3,點Q是△BCD內(nèi)(包括邊界)的動點,則
AP
AQ
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|
1
2
x2-x-6<1},B={x|log4(x+a)<1},若x∈A是x∈B的必要不充分條件,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案