15.設(shè)函數(shù)f(x)=(x-a)2+(ln2x-2a)2,其中x>0,a∈R,存在x0使得f(x0)≤$\frac{1}{5}$成立,則實(shí)數(shù)a的值為(  )
A.$\frac{1}{10}$B.$\frac{2}{5}$C.$\frac{1}{5}$D.1

分析 把函數(shù)看作是動(dòng)點(diǎn)M(x,ln2x)與動(dòng)點(diǎn)N(a,2a)之間距離的平方,利用導(dǎo)數(shù)求出曲線y=ln2x上與直線y=2x平行的切線的切點(diǎn),得到曲線上點(diǎn)到直線距離的最小值,結(jié)合題意可得只有切點(diǎn)到直線距離的平方等于$\frac{1}{5}$,然后由兩直線斜率的關(guān)系列式求得實(shí)數(shù)a的值.

解答 解:函數(shù)f(x)可以看作是動(dòng)點(diǎn)M(x,ln2x)與動(dòng)點(diǎn)N(a,2a)之間距離的平方,
動(dòng)點(diǎn)M在函數(shù)y=ln2x的圖象上,N在直線y=2x的圖象上,
問(wèn)題轉(zhuǎn)化為求直線上的動(dòng)點(diǎn)到曲線的最小距離,
由y=ln2x得,y'=$\frac{1}{x}$=2,解得x=$\frac{1}{2}$,
∴曲線上點(diǎn)M($\frac{1}{2}$,0)到直線y=2x的距離最小,
最小距離d=$\frac{1}{\sqrt{5}}$,
則f(x)≥$\frac{1}{5}$,
根據(jù)題意,要使f(x0)≤$\frac{1}{5}$,
則f(x0)=$\frac{1}{5}$,此時(shí)N恰好為垂足,
由kMN=$\frac{2a-0}{a-\frac{1}{2}}$=$\frac{4a}{2a-1}$=-$\frac{1}{2}$,
解得a=$\frac{1}{10}$.
故選:A.

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)求曲線上過(guò)某點(diǎn)切線的斜率,考查了數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化思想方法,訓(xùn)練了點(diǎn)到直線的距離公式的應(yīng)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知直線(3+2λ)x+(3λ-2)y+5-λ=0恒過(guò)定點(diǎn)P,則與圓C:(x-2)2+(y+3)2=16有公共的圓心且過(guò)點(diǎn)P的圓的標(biāo)準(zhǔn)方程為( 。
A.(x-2)2+(y+3)2=36B.(x-2)2+(y+3)2=25C.(x-2)2+(y+3)2=18D.(x-2)2+(y+3)2=9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)y=f(x)的圖象與y=10x的圖象關(guān)于直線y=x對(duì)稱(chēng),則f(3)+f($\frac{10}{3}$)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)(3x-2)6=a0+a1(2x-1)+a2(2x-1)2+a3(2x-1)3+a4(2x-1)4+a5(2x-1)5+a6(2x-1)6則a1+a3+a5=-$\frac{63}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,圖案共分9個(gè)區(qū)域,有6種不同顏色的涂料可供涂色,每個(gè)區(qū)域只能涂一種顏色的涂料,其中2和9同色、3和6同色、4和7同色、5和8同色,且相鄰區(qū)域的顏色不相同,則涂色方法有( 。
A.360種B.720種C.780種D.840種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過(guò)點(diǎn)M(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$),且其離心率為$\frac{\sqrt{2}}{2}$,F(xiàn)1、F2分別為橢圓C的左、右焦點(diǎn).設(shè)直線l:y=kx+m與橢圓C相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)當(dāng)m=-2時(shí),求△OAB的面積的最大值;
(III)以線段OA,OB為鄰邊作平行四邊形OAPB,若點(diǎn)Q在橢圓C上,且滿(mǎn)足$\overrightarrow{OP}$=λ$\overrightarrow{OQ}$,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.函數(shù)f(x)=$\sqrt{x+1}$+$\frac{1}{x-1}$+x0的定義域?yàn)閧x|x≥-1且x≠0且x≠1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,已知平面α∩β=l,點(diǎn)A∈α,點(diǎn)B∈α,點(diǎn)C∈β,且A∉l,B∉l,直線AB與l不平行,那么平面ABC與平面β的交線與l有什么關(guān)系?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.用秦九韶算法求多項(xiàng)式f(x)=x6-5x5+6x4+x2+3x+2的值,當(dāng)x=-2時(shí),v3的值為-40.

查看答案和解析>>

同步練習(xí)冊(cè)答案