【題目】設(shè)橢圓的左、右頂點(diǎn)分別為,,上頂點(diǎn)為,右焦點(diǎn)為,已知.
(1)證明:.
(2)已知直線的傾斜角為,設(shè)為橢圓上不同于,的一點(diǎn),為坐標(biāo)原點(diǎn),線段的垂直平分線交于點(diǎn),過且垂直于的直線交軸于點(diǎn),若,求直線的方程.
【答案】(1)見解析(2)y(x﹣2).
【解析】
(1)直接由得, 的關(guān)系,再由,,的關(guān)系證得結(jié)論;
(2)由直線的傾斜角可得,的關(guān)系,再由(1)可得橢圓的標(biāo)準(zhǔn)方程,寫出,,的坐標(biāo)及線段的中垂線方程,設(shè)直線,求出的坐標(biāo),由題意求出的坐標(biāo),再由得直線的方程.
解:(1)證明:因?yàn)?/span>,所以,即,兩邊平方得:,而,
;
(2)因?yàn)橹本的傾斜角為,所以,,又由(1)得:,,
解得:,,,所以橢圓的方程為:;所以可得:,,
,設(shè)的坐標(biāo),設(shè)直線,線段的中垂線為,
所以由題意得,,直線的方程:,令得點(diǎn)坐標(biāo),
聯(lián)立直線與橢圓的方程,整理得:,,
即,,所以點(diǎn),,,,
因?yàn)?/span>,,解得:,
所以直線的方程為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語(yǔ)文、數(shù)學(xué)和英語(yǔ)是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個(gè)科目中選取三個(gè)科目作為選考科目.若一個(gè)學(xué)生從六個(gè)科目中選出了三個(gè)科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個(gè)選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.
某學(xué)校為了解高一年級(jí)420名學(xué)生選考科目的意向,隨機(jī)選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計(jì)選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學(xué) | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有8人 | 8 | 8 | 4 | 2 | 1 | 1 |
選考方案待確定的有6人 | 4 | 3 | 0 | 1 | 0 | 0 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 1 | 0 | 0 | 1 |
(1)估計(jì)該學(xué)校高一年級(jí)選考方案確定的學(xué)生中選考生物的學(xué)生有多少人?
(2)假設(shè)男生、女生選擇選考科目是相互獨(dú)立的.從選考方案確定的8位男生中隨機(jī)選出1人,從選考方案確定的10位女生中隨機(jī)選出1人,試求該男生和該女生的選考方案中都含有歷史學(xué)科的概率;
(3)從選考方案確定的8名男生中隨機(jī)選出2名,設(shè)隨機(jī)變量求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生營(yíng)養(yǎng)餐由A和B兩家配餐公司配送. 學(xué)校為了解學(xué)生對(duì)這兩家配餐公司的滿意度,采用問卷的形式,隨機(jī)抽取了40名學(xué)生對(duì)兩家公司分別評(píng)分. 根據(jù)收集的80份問卷的評(píng)分,得到A公司滿意度評(píng)分的頻率分布直方圖和B公司滿意度評(píng)分的頻數(shù)分布表:
(Ⅰ)根據(jù)A公司的頻率分布直方圖,估計(jì)該公司滿意度評(píng)分的中位數(shù);
(Ⅱ)從滿意度高于90分的問卷中隨機(jī)抽取兩份,求這兩份問卷都是給A公司評(píng)分的概率;
(Ⅲ)請(qǐng)從統(tǒng)計(jì)角度,對(duì)A、B兩家公司做出評(píng)價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于、兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小型水庫(kù)的管理部門為研究庫(kù)區(qū)水量的變化情況,決定安排兩個(gè)小組在同一年中各自獨(dú)立的進(jìn)行觀察研究.其中一個(gè)小組研究水源涵養(yǎng)情況.他們通過觀察入庫(kù)的若干小溪和降雨量等因素,隨機(jī)記錄了天的日入庫(kù)水量數(shù)據(jù)(單位:千),得到下面的柱狀圖(如圖甲).另一小組則研究由于放水、蒸發(fā)或滲漏造成的水量消失情況.他們通過觀察與水庫(kù)相連的特殊小池塘的水面下降情況來研究庫(kù)區(qū)水的整體消失量,隨機(jī)記錄了天的庫(kù)區(qū)日消失水量數(shù)據(jù)(單位:千),并將觀測(cè)數(shù)據(jù)整理成頻率分布直方圖(如圖乙).
(1)據(jù)此估計(jì)這一年中日消失水量的平均值;
(2)以頻率作為概率,試解決如下問題:
①分別估計(jì)日流入水量不少于千和日消失量不多于千的概率;
②試估計(jì)經(jīng)過一年后,該水庫(kù)的水量是增加了還是減少了,變化的量是多少?(一年按天計(jì)算),說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖為某大江的一段支流,岸線與近似滿足∥,寬度為.圓為江中的一個(gè)半徑為的小島,小鎮(zhèn)位于岸線上,且滿足岸線,.現(xiàn)計(jì)劃建造一條自小鎮(zhèn)經(jīng)小島至對(duì)岸的水上通道(圖中粗線部分折線段,在右側(cè)),為保護(hù)小島,段設(shè)計(jì)成與圓相切.設(shè).
(1)試將通道的長(zhǎng)表示成的函數(shù),并指出定義域;
(2)若建造通道的費(fèi)用是每公里100萬元,則建造此通道最少需要多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在《增刪算法統(tǒng)宗》中有這樣一則故事:“三百七十八里關(guān),初行健步不為難;次日腳痛減一半,如此六日過其關(guān).”則下列說法正確的是( )
A.此人第二天走了九十六里路B.此人第三天走的路程站全程的
C.此人第一天走的路程比后五天走的路程多六里D.此人后三天共走了42里路
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系x0y中,把曲線α為參數(shù))上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,得到曲線以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程
(1)寫出的普通方程和的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)M在上,點(diǎn)N在上,求|MN|的最小值以及此時(shí)M的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過橢圓上一點(diǎn)作兩條直線,與橢圓另交于,點(diǎn),設(shè)它們的斜率分別為,.
(1)若,,求的面積;
(2)若,,求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com