【題目】如圖所示,正方體的棱長(zhǎng)為1,線(xiàn)段上有兩個(gè)動(dòng)點(diǎn),則下列結(jié)論中正確結(jié)論的序號(hào)是__________.
①;
②直線(xiàn)與平面所成角的正弦值為定值;
③當(dāng)為定值,則三棱錐的體積為定值;
④異面直線(xiàn)所成的角的余弦值為定值.
【答案】①③
【解析】連接,交于點(diǎn).很明顯平面,
而平面,①正確;
由AC⊥平面BB1D1D,得OE是AE在平面BB1D1D上的射影,所以∠AEO是直線(xiàn)AE與平面DBB1D1所成角,由于AE不是定值,所以②不正確;
由于點(diǎn)B到直線(xiàn)B1D1的距離不變,故△BEF的面積為定值,又點(diǎn)A到平面BEF的距離為,故三棱錐E-ABF的體積為定值,故③正確;
當(dāng)E在D1,F在B1,此時(shí)異面直線(xiàn)AE,BF所成的角為,故④不正確;
應(yīng)填:①③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,底面是邊長(zhǎng)為2的菱形, , , , , 為的中點(diǎn).
(1)證明: ;
(2)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
()求的單調(diào)增區(qū)間.
()求在的最大值,及此時(shí)的取值.
()若為的一個(gè)零點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(, ).
(1)若的圖象在點(diǎn)處的切線(xiàn)方程為,求在區(qū)間上的最大值和最小值;
(2)若在區(qū)間上不是單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱的所有棱長(zhǎng)都是, 平面, , 分別是, 的中點(diǎn).
()求證: 平面.
()求二面角的余弦值.
()求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系xoy中,直線(xiàn)l的參數(shù)方程是 (t為參數(shù)),以射線(xiàn)ox為極軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程是 +ρ2sin2θ=1.
(1)求曲線(xiàn)C的直角坐標(biāo)方程;
(2)求直線(xiàn)l與曲線(xiàn)C相交所得的弦AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦點(diǎn)坐標(biāo)為,且短軸一頂點(diǎn)滿(mǎn)足.
(1)求橢圓的方程;
(2)過(guò)的直線(xiàn)與橢圓交于不同的兩點(diǎn),則的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線(xiàn)方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正四面體ABCD的頂點(diǎn)C在平面α內(nèi),且直線(xiàn)BC與平面α所成角為15°,頂點(diǎn)B在平面α上的射影為點(diǎn)O,當(dāng)頂點(diǎn)A與點(diǎn)O的距離最大時(shí),直線(xiàn)CD與平面α所成角的正弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且定義域?yàn)?/span>.
(1)求關(guān)于的方程在上的解;
(2)若在區(qū)間上單調(diào)減函數(shù),求實(shí)數(shù)的取值范圍;
(3)若關(guān)于的方程在上有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com