關(guān)于函數(shù)(a為常數(shù),且a>0)對于下列命題:
①函數(shù)f(x)的最小值為-1;
②函數(shù)f(x)在每一點處都連續(xù);
③函數(shù)f(x)在R上存在反函數(shù);
④函數(shù)f(x)在x=0處可導(dǎo);
⑤對任意的實數(shù)x1<0,x2<0且x1<x2,恒有
其中正確命題的序號是   
【答案】分析:①只需說明在點x=0處函數(shù)f(x)的最小值是-1;
②函數(shù)在點x=0處兩段都有意義且函數(shù)值都為-1,故②正確
③函數(shù)f(x)在R上不是單調(diào)函數(shù)
④只需說明在x=0時,兩段導(dǎo)函數(shù)都有意義且函數(shù)值相等;
⑤已知函數(shù)在R上先增后減,所以f(x)的圖象在[0,+∞)上是上凸的,所以任取兩點連線應(yīng)在圖象的上方
解答:解:①由題意可得函數(shù)在x<0時單調(diào)遞減,在x>0時單調(diào)遞增,在點x=0處函數(shù)f(x)的最小值是-1,故①正確
②只需說明在點x=0處連續(xù),只需說明在x=0時,兩段都有意義且函數(shù)值相等;
③函數(shù)f(x)在R上不是單調(diào)函數(shù),故不存在反函數(shù),故③錯誤
,故④錯誤
⑤函數(shù)在R上先增后減,所以f(x)的圖象在[0,+∞)上是上凸的,所以任取兩點連線應(yīng)在圖象的上方,故⑤正確
故答案為:①②⑤
點評:連續(xù)就是函數(shù)圖象不間斷,在x=0可導(dǎo)就是導(dǎo)函數(shù)在兩段導(dǎo)函數(shù)都有意義且函數(shù)值相等,函數(shù)在某一區(qū)間上不單調(diào),就不會有導(dǎo)函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間以及根據(jù)函數(shù)的增減性得到函數(shù)的最值,結(jié)合函數(shù)圖象,知下凸的函數(shù)圖象,任取兩點連線應(yīng)在圖象的上方.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

關(guān)于函數(shù)數(shù)學(xué)公式(a為常數(shù),且a>0)對于下列命題:
①函數(shù)f(x)的最小值為-1;
②函數(shù)f(x)在每一點處都連續(xù);
③函數(shù)f(x)在R上存在反函數(shù);
④函數(shù)f(x)在x=0處可導(dǎo);
⑤對任意的實數(shù)x1<0,x2<0且x1<x2,恒有數(shù)學(xué)公式
其中正確命題的序號是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省黃岡市黃州一中高三(上)月考數(shù)學(xué)試卷(1月份)(解析版) 題型:填空題

關(guān)于函數(shù)(a為常數(shù),且a>0),對于下列命題:
①函數(shù)f(x)在每一點處都連續(xù);
②若a=2,則函數(shù)f(x)在x=0處可導(dǎo);
③函數(shù)f(x)在R上存在反函數(shù);
④函數(shù)f(x)有最大值
⑤對任意的實數(shù)x1>x2≥0,恒有f()<;
其中正確命題的序號是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年湖北省宜昌一中、枝江一中、當(dāng)陽一中三校聯(lián)合體高三2月聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

關(guān)于函數(shù)(a為常數(shù),且a>0)對于下列命題:
①函數(shù)f(x)的最小值為-1;
②函數(shù)f(x)在每一點處都連續(xù);
③函數(shù)f(x)在R上存在反函數(shù);
④函數(shù)f(x)在x=0處可導(dǎo);
⑤對任意的實數(shù)x1<0,x2<0且x1<x2,恒有
其中正確命題的序號是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年黃岡中學(xué)一模理)關(guān)于函數(shù)a為常數(shù),且a>0)對于下列命題:

①函數(shù)f(x)的最小值為-1;                   ②函數(shù)f(x)在每一點處都連續(xù);

③函數(shù)f(x)在R上存在反函數(shù);              ④函數(shù)f(x)在x=0處可導(dǎo);

⑤對任意的實數(shù)x1<0, x2<0且x1<x2,恒有.

其中正確命題的序號是_____________.

查看答案和解析>>

同步練習(xí)冊答案