分析 作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最大值.
解答 解:作出不等式$\left\{\begin{array}{l}{x-y≤10}\\{0≤x+y≤20}\\{0≤y≤15}\end{array}\right.$對應(yīng)的平面區(qū)域(陰影部分),
由z=2x+3y,得y=-$\frac{2}{3}$x+$\frac{1}{3}$z.
平移直線y=-$\frac{2}{3}$x+$\frac{1}{3}$z,由圖象可知當直線y=-$\frac{2}{3}$x+$\frac{1}{3}$z經(jīng)過點A時,直線y=-$\frac{2}{3}$x+$\frac{1}{3}$z的截距最大,此時z最大.
由$\left\{\begin{array}{l}{y=15}\\{x+y=20}\end{array}\right.$,解得A(5,15).
此時z的最大值為z=2×5+3×15=55,
故答案為:55.
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x,y∈R,若x+y≠0,則x≠1且y≠-1 | |
B. | a∈R,“$\frac{1}{a}$<1“是“a>1“的必要不充分條件 | |
C. | 命題“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0” | |
D. | “若am2<bm2,則a<b”的逆命題為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 3 | C. | $\sqrt{5}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ¬p | B. | (¬p)∨q | C. | p∧q | D. | p∧(¬q) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com