【題目】已知三點(diǎn),,,曲線(xiàn)上任意一點(diǎn)滿(mǎn)足.
(1)求的方程;
(2)動(dòng)點(diǎn) 在曲線(xiàn)上,是曲線(xiàn)在處的切線(xiàn).問(wèn):是否存在定點(diǎn)使得與都相交,交點(diǎn)分別為,且與的面積之比為常數(shù)?若存在,求的值;若不存在,說(shuō)明理由.
【答案】(1);(2)存在,.
【解析】分析:(1)先求出、的坐標(biāo),由此求得||和的值,兩式相等,化簡(jiǎn)可得所求;(2)根據(jù)直線(xiàn)PA,PB的方程以及曲線(xiàn)C在點(diǎn)Q(x0,y0)(﹣2<x0<2)處的切線(xiàn)方程, D、E兩點(diǎn)的橫坐標(biāo),可得S△PDE和S△QAB的比值,從而求得參數(shù)值.
詳解:
(1)依題意可得,
,
由已知得,化簡(jiǎn)得曲線(xiàn)C的方程: ,
(2)假設(shè)存在點(diǎn)滿(mǎn)足條件,則直線(xiàn)的方程是,直線(xiàn)的方程是,曲線(xiàn)C在點(diǎn)Q處的切線(xiàn)l的方程為:,它與y軸的交點(diǎn)為,由于,因此
①當(dāng)時(shí),,存在,使得,即l與直線(xiàn)平行,故當(dāng)時(shí)與題意不符
②當(dāng)時(shí),,所以l 與直線(xiàn)一定相交,分別聯(lián)立方程組,
解得的橫坐標(biāo)分別是
則,又,
有,
又于是
對(duì)任意,要使與的面積之比是常數(shù),只需t滿(mǎn)足,
解得,此時(shí)與的面積之比為2,故存在,使與的面積之比是常數(shù)2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查某中學(xué)學(xué)生在周日上網(wǎng)的時(shí)間,隨機(jī)對(duì)名男生和名女生進(jìn)行了不記名的問(wèn)卷調(diào)查,得到了如下的統(tǒng)計(jì)結(jié)果:
表1:男、女生上網(wǎng)時(shí)間與頻數(shù)分布表
上網(wǎng)時(shí)間(分鐘) | [30,40) | [40,50) | [50,60) | [60,70) | [70,80] |
男生人數(shù) | 5 | 25 | 30 | 25 | 15 |
女生人數(shù) | 10 | 20 | 40 | 20 | 10 |
(Ⅰ)若該中學(xué)共有女生750人,試估計(jì)其中上網(wǎng)時(shí)間不少于60分鐘的人數(shù);
(Ⅱ)完成下表,并回答能否有90%的把握認(rèn)為“學(xué)生周日上網(wǎng)時(shí)間與性別有關(guān)”?
上網(wǎng)時(shí)間少于60分鐘 | 上網(wǎng)時(shí)間不少于60分鐘 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
附:公式,其中
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2|x+1|+|2x﹣a|(x∈R).
(1)當(dāng)a>﹣2時(shí),函數(shù)f(x)的最小值為4,求實(shí)數(shù)a的值;
(2)若對(duì)于任意,x∈[﹣1,4],不等式f(x)≥3x恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線(xiàn)l的參數(shù)方程為 (t為參數(shù),α為直線(xiàn)的傾斜角).以平面直角坐標(biāo)系xOy極點(diǎn),x的正半軸為極軸,取相同的長(zhǎng)度單位,建立極坐標(biāo)系.圓的極坐標(biāo)方程為ρ=2cosθ,設(shè)直線(xiàn)與圓交于A(yíng),B兩點(diǎn). (Ⅰ)求圓C的直角坐標(biāo)方程與α的取值范圍;
(Ⅱ)若點(diǎn)P的坐標(biāo)為(﹣1,0),求 + 取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)若函數(shù)在R上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)若,證明:當(dāng)時(shí),.
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采取分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對(duì)學(xué)生進(jìn)行視力調(diào)查。
(I)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目。
(II)若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析,
(1)列出所有可能的抽取結(jié)果;
(2)求抽取的2所學(xué)校均為小學(xué)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的右焦點(diǎn)F(1,0),橢圓Γ的左,右頂點(diǎn)分別為M,N.過(guò)點(diǎn)F的直線(xiàn)l與橢圓交于C,D兩點(diǎn),且△MCD的面積是△NCD的面積的3倍.
(Ⅰ)求橢圓Γ的方程;
(Ⅱ)若CD與x軸垂直,A,B是橢圓Γ上位于直線(xiàn)CD兩側(cè)的動(dòng)點(diǎn),且滿(mǎn)足∠ACD=∠BCD,試問(wèn)直線(xiàn)AB的斜率是否為定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題正確的是( )
A. 如果兩條平行直線(xiàn)中的一條與一個(gè)平面平行,那么另一條也與這個(gè)平面平行
B. 若一條直線(xiàn)平行于兩個(gè)相交平面,則這條直線(xiàn)與這兩個(gè)平面的交線(xiàn)平行
C. 垂直于同一條直線(xiàn)的兩條直線(xiàn)相互垂直
D. 若兩條直線(xiàn)與第三條直線(xiàn)所成的角相等,則這兩條直線(xiàn)互相平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若f(-1)=f(1),求a,并直接寫(xiě)出函數(shù)的單調(diào)增區(qū)間;
(2)當(dāng)a≥時(shí),是否存在實(shí)數(shù)x,使得=一?若存在,試確定這樣的實(shí)數(shù)x的個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com