【題目】下列命題正確的是( )
A. 如果兩條平行直線中的一條與一個平面平行,那么另一條也與這個平面平行
B. 若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行
C. 垂直于同一條直線的兩條直線相互垂直
D. 若兩條直線與第三條直線所成的角相等,則這兩條直線互相平行
【答案】B
【解析】
在A中,另一條也與這個平面平行或者包含于這個平面;在B中,利用線面平行的判定定理和性質(zhì)定理可判斷B正確;在C中,垂直于同一條直線的兩條直線相交、平行或異面;在D中,這兩條直線相交、平行或異面.
在A中,如果兩條平行直線中的一條與一個平面平行,那么另一條也與這個平面平行或者包含于這個平面,故A錯誤;
在B中,設(shè)平面,,,由線面平行的性質(zhì)定理,在平面內(nèi)存在直線,
在平面內(nèi)存在直線,所以由平行公理知,
從而由線面平行的判定定理可證明,進而由線面平行的性質(zhì)定理證明得,從而,故B正確;
在C中,垂直于同一條直線的兩條直線相交、平行或異面,故C錯誤;
在D中,若兩條直線與第三條直線所成的角相等,則這兩條直線相交、平行或異面,故D錯誤.
故選:B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: =1(a>b>0)的左、右焦點分別為F1、F2 , A為橢圓E的右頂點,B,C分別為橢圓E的上、下頂點.線段CF2的延長線與線段AB交于點M,與橢圓E交于點P.
(1)若橢圓的離心率為 ,△PF1C的面積為12,求橢圓E的方程;
(2)設(shè)S =λS ,求實數(shù)λ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三點,,,曲線上任意一點滿足.
(1)求的方程;
(2)動點 在曲線上,是曲線在處的切線.問:是否存在定點使得與都相交,交點分別為,且與的面積之比為常數(shù)?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知x0= 是函數(shù)f(x)=sin(2x+φ)的一個極大值點,則f(x)的一個單調(diào)遞減區(qū)間是( )
A.( , )
B.( , )
C.( ,π)
D.( ,π)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黨的十九大報告指出,建設(shè)生態(tài)文明是中華民族永續(xù)發(fā)展的千年大計.而清潔能源的廣泛使用將為生態(tài)文明建設(shè)提供更有力的支撐.沼氣作為取之不盡、用之不竭的生物清潔能源,在保護綠水青山方面具有獨特功效.通過辦沼氣帶來的農(nóng)村“廁所革命”,對改善農(nóng)村人居環(huán)境等方面,起到立竿見影的效果.為了積極響應(yīng)國家推行的“廁所革命”,某農(nóng)戶準(zhǔn)備建造一個深為2米,容積為32立方米的長方體沼氣池,如果池底每平方米的造價為150元,池壁每平方米的造價為120元,沼氣池蓋子的造價為3000元,問怎樣設(shè)計沼氣池能使總造價最低?最低總造價是多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣mx(m∈R). (Ⅰ)當(dāng)m=0時,討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)b>a>0時,總有 >1成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】筒車是我國古代發(fā)明的一種水利灌溉工具,因其經(jīng)濟又環(huán)保,至今還在農(nóng)業(yè)生產(chǎn)中得到使用,如左下圖.假定在水流量穩(wěn)定的情況下,半徑為3m的筒車上的每一個盛水桶都按逆時針方向作角速度為rad/min的勻速圓周運動,平面示意圖如右下圖,己知筒車中心O到水面BC的距離為2m,初始時刻其中一個盛水筒位于點P0處,且∠P0OA=(OA//BC),則8min后該盛水筒到水面的距離為____m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且
(Ⅰ)當(dāng)時,求函數(shù)的圖像在點處的切線方程;
(Ⅱ)求函數(shù)在區(qū)間上的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com