【題目】已知橢圓E: =1(a>b>0)的左、右焦點分別為F1、F2 , A為橢圓E的右頂點,B,C分別為橢圓E的上、下頂點.線段CF2的延長線與線段AB交于點M,與橢圓E交于點P.
(1)若橢圓的離心率為 ,△PF1C的面積為12,求橢圓E的方程;
(2)設S =λS ,求實數(shù)λ的最小值.

【答案】
(1)解:由橢圓的離心率e= = ,則a= c,b2=a2﹣c2=c2,

∴△F1CF2是等腰直角三角形,丨PF1丨+丨PF2丨=2a,則丨PF2丨=2a﹣丨PF1丨,

由勾股定理知,丨PF12=丨CF12+丨CP丨2,丨PF12=a2+(a+丨PF222

則丨PF12=a2+(3a﹣丨PF122,

解得:丨PF1丨= ,丨PF2丨= ,丨PC丨= ,

∴△PF1C的面積為S= ×a× =12,即a2=18,b2=9.

∴橢圓E的方程為


(2)解:設P(x,y),因為直線AB的方程為y=﹣ x+b,直線PC的方程為y= ﹣b,

所以聯(lián)立方程解得M( ).

因為S =λS ,所以丨CM丨=λ丨CP丨,所以

∴( , )=λ(x,y+b),則x= ,y= ,

代入橢圓E的方程,得 + =1,

即4c2+[2a﹣λ(a+c)]22(a+c)2,

∴λ= = =1+e+ ﹣2≥2 ﹣2=2 ﹣2,

因為0<e<1,1<e+1<2,

∴當且僅當e+1= ,即e= ﹣1時,

∴取到最小值2 ﹣2.


【解析】(1)由題意可知b=c,則△F1CF2是等腰直角三角形,利用勾股定理及橢圓的定義,求得丨PF1丨= ,丨PF2丨= ,丨PC丨= ,根據(jù)三角形的面積公式,即可求得橢圓E的方程;(2)求得直線AB及PC的方程,聯(lián)立求得M點坐標,由題意可知:丨CM丨=λ丨CP丨,根據(jù)向量數(shù)量積求得P點坐標,代入橢圓方程,利用基本不等式性質即可求得λ的最小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,對任意滿足,且,數(shù)列滿足,其前9項和為63.

(1)求數(shù)列的通項公式;

(2)令,數(shù)列的前項和為,若對任意正整數(shù),都有,求實數(shù)的取值范圍;

(3)將數(shù)列的項按照為奇數(shù)時,放在前面;當為偶數(shù)時,放在前面的要求進行交叉排列,得到一個新的數(shù)列:,求這個新數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調查某中學學生在周日上網的時間,隨機對名男生和名女生進行了不記名的問卷調查,得到了如下的統(tǒng)計結果:

表1:男、女生上網時間與頻數(shù)分布表

上網時間(分鐘)

[30,40)

[40,50)

[50,60)

[60,70)

[70,80]

男生人數(shù)

5

25

30

25

15

女生人數(shù)

10

20

40

20

10

(Ⅰ)若該中學共有女生750人,試估計其中上網時間不少于60分鐘的人數(shù);

(Ⅱ)完成下表,并回答能否有90%的把握認為“學生周日上網時間與性別有關”?

上網時間少于60分鐘

上網時間不少于60分鐘

合計

男生

女生

合計

附:公式,其中

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為菱形,四邊形ACEF為平行四邊形,設BD與AC相交于點G,AB=BD=2,AE= ,∠EAD=∠EAB.
(1)證明:平面ACEF⊥平面ABCD;
(2)若AE與平面ABCD所成角為60°,求二面角B﹣EF﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三課外興趣小組為了解高三同學高考結束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學生進行問卷調查,情況如下表:

打算觀看

不打算觀看

女生

20

b

男生

c

25

1)求出表中數(shù)據(jù)b,c;

2)判斷是否有99%的把握認為觀看2018年足球世界杯比賽與性別有關;

3)為了計算10人中選出9人參加比賽的情況有多少種,我們可以發(fā)現(xiàn)它與10人中選出1人不參加比賽的情況有多少種是一致的.現(xiàn)有問題:在打算觀看2018年足球世界杯比賽的同學中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.

P(K2≥k0)

0.10

0.05

0.025

0.01

0.005

K0

2.706

3.841

5.024

6.635

7.879

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線

1)若直線不經過第四象限,求的取值范圍;

2)若直線軸負半軸于點,交軸正半軸于點,為坐標原點,設的面積為,求的最小值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2|x+1|+|2x﹣a|(x∈R).
(1)當a>﹣2時,函數(shù)f(x)的最小值為4,求實數(shù)a的值;
(2)若對于任意,x∈[﹣1,4],不等式f(x)≥3x恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù),α為直線的傾斜角).以平面直角坐標系xOy極點,x的正半軸為極軸,取相同的長度單位,建立極坐標系.圓的極坐標方程為ρ=2cosθ,設直線與圓交于A,B兩點. (Ⅰ)求圓C的直角坐標方程與α的取值范圍;
(Ⅱ)若點P的坐標為(﹣1,0),求 + 取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題正確的是( )

A. 如果兩條平行直線中的一條與一個平面平行,那么另一條也與這個平面平行

B. 若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行

C. 垂直于同一條直線的兩條直線相互垂直

D. 若兩條直線與第三條直線所成的角相等,則這兩條直線互相平行

查看答案和解析>>

同步練習冊答案