【題目】如圖所示,在正方體中,分別為的中點(diǎn).

1)求證:平面;

2)求證:平面.

【答案】1)證明見解析.(2)證明見解析

【解析】

(1)中,中點(diǎn),中點(diǎn),即可證得,根據(jù)線面平行的判定定理即可得出結(jié)論;

(2) 在正方體中易證得平面,,可證得平面,即可得出,同理可證得,根據(jù)線面垂直的判定定理即可證得結(jié)論.

1)連接

∵正方體

∴四邊形為正方形

中點(diǎn)

也為中點(diǎn)

又∵在中,中點(diǎn)

平面,平面

平面

2)連接,

為正方體

∴四邊形為正方形

平面

平面

平面

∵四邊形為正方形

為正方形的對角線

平面

平面

平面

∵正方體

平面

平面

為正方體

∴四邊形為正方形

又∵為正方形的對角線

平面

平面

平面

平面

平面

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程:為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程;

2)過曲線上一點(diǎn)作直線與曲線交于兩點(diǎn),中點(diǎn)為,,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(diǎn)的直線與拋物線交于不同的兩點(diǎn),點(diǎn),連接的直線與拋物線的另一交點(diǎn)分別為,如圖所示.

)若,求直線的斜率;

)試判斷直線的斜率是否為定值,如果是,請求出此定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐PABCD中,ABCD,ABBCABBC1,PACD2PA⊥平面ABCD,E在棱PB上.

(Ⅰ)求證:ACPD

(Ⅱ)若VPACE,求證:PD∥平面AEC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐SABCD中,SDCDSC2AB2BC,平面ABCD⊥底面SDC,ABCD,∠ABC90°,ESD中點(diǎn).

1)證明:直線AE//平面SBC;

2)點(diǎn)F為線段AS的中點(diǎn),求二面角FCDS的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線上的點(diǎn)到其焦點(diǎn)距離為3,過拋物線外一動(dòng)點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,且切點(diǎn)弦恒過點(diǎn).

1)求;

2)求證:動(dòng)點(diǎn)在一條定直線上運(yùn)動(dòng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,定義:以橢圓中心為圓心,長軸為直徑的圓叫做橢圓的輔助圓”.過橢圓第四象限內(nèi)一點(diǎn)Mx軸的垂線交其輔助圓于點(diǎn)N,當(dāng)點(diǎn)N在點(diǎn)M的下方時(shí),稱點(diǎn)N為點(diǎn)M下輔助點(diǎn)”.已知橢圓E上的點(diǎn)的下輔助點(diǎn)為(1,﹣1.

1)求橢圓E的方程;

2)若△OMN的面積等于,求下輔助點(diǎn)N的坐標(biāo);

3)已知直線lxmyt0與橢圓E交于不同的AB兩點(diǎn),若橢圓E上存在點(diǎn)P,滿足,求直線l與坐標(biāo)軸圍成的三角形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是單調(diào)函數(shù),則實(shí)數(shù)的取值范圍是_________;若存在實(shí)數(shù),使函數(shù)有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的極值.

2,若不等式上恒成立,求的最大值.

3)是否存在實(shí)數(shù),使得函數(shù)上的值域?yàn)?/span>?如果存在,請給出證明;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案