13.函數(shù)y=2-x與$y=-{log_{\frac{1}{2}}}({-x})$圖象的大致形狀是( 。
A.B.C.D.

分析 確定函數(shù)過定點(diǎn),函數(shù)的單調(diào)性,即可得出結(jié)論.

解答 解:函數(shù)y=2-x過(0,1),單調(diào)遞減,$y=-{log_{\frac{1}{2}}}({-x})$過(-1,0),在(-∞,0)單調(diào)遞減,
故選D.

點(diǎn)評 本題考查函數(shù)的圖象,考查數(shù)形結(jié)合的數(shù)學(xué)思想,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=($\frac{1}{e}$)x+lnx,正數(shù)a,b,c滿足a<b<c,且f(a)•f(b)•f(c)>0,若實(shí)數(shù)x0是方程f(x)=0的一個(gè)解,那么下列不等式中不可能成立的是( 。
A.x0>cB.x0>bC.x0<cD.x0<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖所示,橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1的左,右頂點(diǎn)分別為A,A′,線段CD是垂直于橢圓長軸的弦,連接AC,DA′相交于點(diǎn)P,則點(diǎn)P的軌跡方程為$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知兩點(diǎn)F1(-4,0),F(xiàn)2(4,0),到它們的距離的和是10的點(diǎn)M的軌跡方程是$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.讀下的程序,并回答問題.

該程序的作用是輸入x的值,輸出y的值.
(1)畫出該程序?qū)?yīng)的程序框圖.
(2)若要使輸入的x值與輸出的y值相等,這樣的x值有幾個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)$y={log_{\frac{1}{2}}}({-{x^2}+2x+1})$(x∈[0,$\sqrt{2}$])的值域是-[-1,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知拋物線的方程為y2=2mx(m>0),焦點(diǎn)坐標(biāo)為(1,0),則m等于(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知$\sqrt{2+\frac{2}{3}}=2\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}=3\sqrt{\frac{3}{8}}$,$\sqrt{8+\frac{a}}=8\sqrt{\frac{a}}$,則a、b的值分別是63,8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若x,y滿足$\left\{{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{y≥0}\end{array}}\right.$,則z=x+2y的最大值為2.

查看答案和解析>>

同步練習(xí)冊答案