【題目】某高中學(xué)校決定開展“數(shù)學(xué)知識競賽”活動。各班級都進(jìn)行了選拔,高三一班全體同學(xué)都參加了考試,將他們的分?jǐn)?shù)進(jìn)行統(tǒng)計,并作出如右圖的頻率分布直方圖和分?jǐn)?shù)的莖葉圖(其中,莖葉圖中僅列出了得分在的數(shù)據(jù))
(1)求高三一班學(xué)生的總數(shù)和頻率分布直方圖中a、b的值;
(2)在高三一班學(xué)生中,從競賽成績在80分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生參加學(xué)校“數(shù)學(xué)知識競賽”,求所抽取的2名學(xué)生中至少有一人得分在[90,100]內(nèi)的概率。
【答案】(1) , a=0.006,b=0.028;(2)
【解析】
(1)由頻率分布直方圖求出得分在[50,60)的頻率為0.16,由莖葉圖得[50,60)的頻數(shù)為8,由此能求出樣本容量,由莖葉圖得[90,100)的頻數(shù)為3,由此利用頻率分布直方圖能求出頻率分布直方圖中a、b的值.
(2)競賽成績在80分以上(含80分)的學(xué)生有8人,其中得分在[80,90)內(nèi)的學(xué)生有5人,得分在[90,100)內(nèi)的學(xué)生有3人,由此能求出所抽取的2名學(xué)生中至少有一人得分在[90,100]的概率.
(1)由頻率分布直方圖得得分在[50,60)的頻率為0.016×10=0.16,
由莖葉圖得[50,60)的頻數(shù)為8,
∴樣本容量.
由莖葉圖得[90,100)的頻數(shù)為3,
解得a=0.006,b=0.028.
(2)競賽成績在80分以上(含80分)的學(xué)生有50(0.010×10+0.006×10)=8人,
其中得分在[80,90)內(nèi)的學(xué)生有5人,得分在[90,100)內(nèi)的學(xué)生有3人,
從競賽成績在80分以上(含80分)的學(xué)生在隨機(jī)抽取2名學(xué)生參加“全市高中數(shù)學(xué)競賽”,
基本事件總數(shù),
所抽取的2名學(xué)生中至少有一人得分在[90,100]的對立事件是抽取的兩人得分都在[80,90)內(nèi),∴所抽取的2名學(xué)生中至少有一人得分在[90,100]的概率:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游勝地欲開發(fā)一座景觀山,從山的側(cè)面進(jìn)行勘測,迎面山坡線由同一平面的兩段拋物線組成,其中所在的拋物線以為頂點、開口向下,所在的拋物線以為頂點、開口向上,以過山腳(點)的水平線為軸,過山頂(點)的鉛垂線為軸建立平面直角坐標(biāo)系如圖(單位:百米).已知所在拋物線的解析式,所在拋物線的解析式為
(1)求值,并寫出山坡線的函數(shù)解析式;
(2)在山坡上的700米高度(點)處恰好有一小塊平地,可以用來建造索道站,索道的起點選擇在山腳水平線上的點處,(米),假設(shè)索道可近似地看成一段以為頂點、開口向上的拋物線當(dāng)索道在上方時,索道的懸空高度有最大值,試求索道的最大懸空高度;
(3)為了便于旅游觀景,擬從山頂開始、沿迎面山坡往山下鋪設(shè)觀景臺階,臺階每級的高度為20厘米,長度因坡度的大小而定,但不得少于20厘米,每級臺階的兩端點在坡面上(見圖).試求出前三級臺階的長度(精確到厘米),并判斷這種臺階能否一直鋪到山腳,簡述理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面給出了關(guān)于復(fù)數(shù)的四種類比推理:
①復(fù)數(shù)的加減法運算可以類比多項式的加減法運算法則;
②由向量的性質(zhì),類比得到復(fù)數(shù)的性質(zhì);
③方程有兩個不同實數(shù)根的條件是可以類比得到:方程有兩個不同復(fù)數(shù)根的條件是;
④由向量加法的幾何意義可以類比得到復(fù)數(shù)加法的幾何意義,其中類比錯誤的是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人各自獨立地進(jìn)行射擊比賽,甲、乙兩人向射擊一次,擊中目標(biāo)的概率分別是和,假設(shè)每次射擊是否擊中目標(biāo)相互之間沒有影響.
(1)求甲射擊3次,至少有1次未擊中目標(biāo)的概率;
(2)求兩人各射擊3次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)1次的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動車行經(jīng)人行道時,應(yīng)當(dāng)減速慢行;遇行人正在通過人行道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”, 《中華人民共和國道路交通安全法》第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個月內(nèi)駕駛員“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數(shù) | 120 | 105 | 100 | 90 | 85 |
(1)請利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;
(2)預(yù)測該路口9月份的不“禮讓斑馬線”違章駕駛員人數(shù).
參考公式: , .
參考數(shù)據(jù): .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著國內(nèi)電商的不斷發(fā)展,快遞業(yè)也進(jìn)入了高速發(fā)展時期,按照國務(wù)院的發(fā)展戰(zhàn)略布局,以及國家郵政管理總局對快遞業(yè)的宏觀調(diào)控,SF快遞收取快遞費的標(biāo)準(zhǔn)是:重量不超過1kg的包裹收費10元;重量超過1kg的包裹,在收費10元的基礎(chǔ)上,每超過1kg(不足1kg,按1kg計算)需再收5元.某縣SF分代辦點將最近承攬的100件包裹的重量統(tǒng)計如下:
重量(單位:kg) | (0,1] | (1,2] | (2,3] | (3,4] | (4,5] |
件數(shù) | 43 | 30 | 15 | 8 | 4 |
對近60天,每天攬件數(shù)量統(tǒng)計如下表:
件數(shù)范圍 | 0~100 | 101~200 | 201~300 | 301~400 | 401~500 |
件數(shù) | 50 | 150 | 250 | 350 | 450 |
天數(shù) | 6 | 6 | 30 | 1 | 6 |
以上數(shù)據(jù)已做近似處理,將頻率視為概率.
(1)計算該代辦未來5天內(nèi)不少于2天攬件數(shù)在101~300之間的概率;
(2)①估計該代辦點對每件包裹收取的快遞費的平均值;
②根據(jù)以往的經(jīng)驗,該代辦點將快遞費的三分之一作為前臺工作人員的工資和公司利潤,其余的用作其他費用.目前該代辦點前臺有工作人員3人,每人每天攬件不超過150件,日工資110元.代辦點正在考慮是否將前臺工作人員裁減1人,試計算裁員前后代辦點每日利潤的數(shù)學(xué)期望,若你是決策者,是否裁減工作人員1人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:(a>b>0)的兩個焦點分別為F1,F2,離心率為,過F1的直線l與橢圓C交于M,N兩點,且△MNF2的周長為8.
(1)求橢圓C的方程;
(2)若直線y=kx+b與橢圓C分別交于A,B兩點,且OA⊥OB,試問點O到直線AB的距離是否為定值,證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時,解不等式;
(2)若關(guān)于的方程的解集中恰有一個元素,求的取值范圍;
(3)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com