【題目】已知函數(shù),,如果對(duì)于定義域內(nèi)的任意實(shí)數(shù),對(duì)于給定的非零常數(shù),總存在非零常數(shù),恒有成立,則稱函數(shù)是上的級(jí)類增周期函數(shù),周期為,若恒有成立,則稱函數(shù)是上的級(jí)類周期函數(shù),周期為.
(1)已知函數(shù)是上的周期為1的2級(jí)類增周期函數(shù),求實(shí)數(shù)的取值范圍;
(2)已知,是上的級(jí)類周期函數(shù),且是上的單調(diào)增函數(shù),當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】
(1)根據(jù)定義可以得到,對(duì)這個(gè)不等式進(jìn)行常變量分離,構(gòu)造函數(shù),利用新函數(shù)的單調(diào)性可以求出實(shí)數(shù)的取值范圍;
(2)根據(jù)函數(shù)的周期,利用時(shí),函數(shù)的解析式求出當(dāng)時(shí),函數(shù)的解析式,最后根據(jù)函數(shù)的單調(diào)性求出實(shí)數(shù)的取值范圍.
解:(1)由題意可知:,
即對(duì)一切恒成立,
,
∵
∴,
令 ,則
在上單調(diào)遞增,
∴,
∴ .
(2)∵時(shí),,
∴當(dāng)時(shí),,
當(dāng)時(shí),,
即時(shí),,,
∵在上單調(diào)遞增,
∴且,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓的離心率為,右準(zhǔn)線的方程為分別為橢圓C的左、右焦點(diǎn),A,B分別為橢圓C的左、右頂點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)作斜率為的直線l交橢圓C于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左側(cè)),且,設(shè)直線AM,BN的斜率分別為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中華文化博大精深,源遠(yuǎn)流長(zhǎng),每年都有大批外國(guó)游客入境觀光旅游或者學(xué)習(xí)等,下面是年至年三個(gè)不同年齡段外國(guó)入境游客數(shù)量的柱狀圖:
下面說(shuō)法錯(cuò)誤的是:( )
A.年至年外國(guó)入境游客中,歲年齡段人數(shù)明顯較多
B.年以來(lái),三個(gè)年齡段的外國(guó)入境游客數(shù)量都在逐年增加
C.年以來(lái),歲外國(guó)入境游客增加數(shù)量大于歲外國(guó)入境游客增加數(shù)量
D.年,歲外國(guó)入境游客增長(zhǎng)率大于歲外國(guó)入境游客增長(zhǎng)率
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“五行”是中國(guó)古代哲學(xué)的一種系統(tǒng)觀,廣泛用于中醫(yī)、堪輿、命理、相術(shù)和占卜等方面.古人把宇宙萬(wàn)物劃分為五種性質(zhì)的事物,也即分成木、火、土、金、水五大類,并稱它們?yōu)?/span>“五行”.中國(guó)古代哲學(xué)家用五行理論來(lái)說(shuō)明世界萬(wàn)物的形成及其相互關(guān)系,創(chuàng)造了五行相生相克理論.相生,是指兩類五行屬性不同的事物之間存在相互幫助,相互促進(jìn)的關(guān)系,具體是:木生火,火生土,土生金,金生水,水生木.相克,是指兩類五行屬性不同的事物之間是相互克制的關(guān)系,具體是:木克土,土克水,水克火、火克金、金克木.現(xiàn)從分別標(biāo)有木,火,土,金,水的根竹簽中隨機(jī)抽取根,則所抽取的根竹簽上的五行屬性相克的概率為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)設(shè),若對(duì)任意的,存在使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)已知圓,圓,動(dòng)圓與圓外切并且與圓內(nèi)切,圓心的軌跡為曲線.
(Ⅰ)求的方程;
(Ⅱ)是與圓,圓都相切的一條直線,與曲線交于,兩點(diǎn),當(dāng)圓的半徑最長(zhǎng)時(shí),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)均為整數(shù),其前n項(xiàng)和為Sn.規(guī)定:若數(shù)列{an}滿足前r項(xiàng)依次成公差為1的等差數(shù)列,從第r﹣1項(xiàng)起往后依次成公比為2的等比數(shù)列,則稱數(shù)列{an}為“r關(guān)聯(lián)數(shù)列”.
(1)若數(shù)列{an}為“6關(guān)聯(lián)數(shù)列”,求數(shù)列{an}的通項(xiàng)公式;
(2)在(1)的條件下,求出Sn,并證明:對(duì)任意n∈N*,anSn≥a6S6;
(3)已知數(shù)列{an}為“r關(guān)聯(lián)數(shù)列”,且a1=﹣10,是否存在正整數(shù)k,m(m>k),使得a1+a2+…+ak﹣1+ak=a1+a2+…+am﹣1+am?若存在,求出所有的k,m值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了檢測(cè)某種零件的一條生產(chǎn)線的生產(chǎn)過(guò)程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)分成,,,,,,組,得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間之外,則認(rèn)為該零件屬“不合格”的零件,其中,分別為樣本平均和樣本標(biāo)準(zhǔn)差,計(jì)算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
(1)若一個(gè)零件的尺寸是,試判斷該零件是否屬于“不合格”的零件;
(2)工廠利用分層抽樣的方法從樣本的前組中抽出個(gè)零件,標(biāo)上記號(hào),并從這個(gè)零件中再抽取個(gè),求再次抽取的個(gè)零件中恰有個(gè)尺寸小于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在上的函數(shù),滿足.
(1)證明:2是函數(shù)的周期;
(2)當(dāng)時(shí),,求在時(shí)的解析式,并寫(xiě)出在()時(shí)的解析式;
(3)對(duì)于(2)中的函數(shù),若關(guān)于x的方程恰好有20個(gè)解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com