【題目】如圖,在正△ABC中,點(diǎn)D,E分別在邊AC, AB上,且AD=AC,AE=AB,BD,CE相交于點(diǎn)F.
(Ⅰ)求證:A,E,F,D四點(diǎn)共圓;
(Ⅱ)若正△ABC的邊長(zhǎng)為2,求A,E,F,D所在圓的半徑.
【答案】(1)證明過(guò)程詳見(jiàn)解析;(2).
【解析】試題本題以正三角形為幾何背景,考查四點(diǎn)共圓問(wèn)題以及相似三角形問(wèn)題,考查學(xué)生的轉(zhuǎn)化與化歸的能力.第一問(wèn),利用已知條件中邊的比例關(guān)系可得出結(jié)論,再利用三角形相似,得出,所以,所以可證四點(diǎn)共圓;第二問(wèn),根據(jù)所給正三角形的邊長(zhǎng)為2,利用已知的比例關(guān)系,得出各個(gè)小邊的長(zhǎng)度,從而得出為正三角形,所以得出,所以是所在圓的圓心,而是半徑,即為.
試題解析:(Ⅰ)證明:∵, ∴,
∵在正中,, ∴,
又∵,, ∴, ∴,
即,所以四點(diǎn)共圓. 5分
(Ⅱ)解:如圖,
取的中點(diǎn),連接,則,
∵, ∴,
∵,, ∴為正三角形,
∴,即,
所以點(diǎn)是外接圓的圓心,且圓的半徑為.
由于四點(diǎn)共圓,即四點(diǎn)共圓,其半徑為. 10分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線:,過(guò)拋物線焦點(diǎn)且與軸垂直的直線與拋物線相交于、兩點(diǎn),且的周長(zhǎng)為.
(1)求拋物線的方程;
(2)若直線過(guò)焦點(diǎn)且與拋物線相交于、兩點(diǎn),過(guò)點(diǎn)、分別作拋物線的切線、,切線與相交于點(diǎn),求:的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】遞增的等差數(shù)列的前項(xiàng)和為.若與是方程的兩個(gè)實(shí)數(shù)根.
(1)求數(shù)列的通項(xiàng)公式;
(2)當(dāng)為多少時(shí),取最小值,并求其最小值;
(3)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小型企業(yè)甲產(chǎn)品生產(chǎn)的投入成本x(單位:萬(wàn)元)與產(chǎn)品銷(xiāo)售收入y(單位:萬(wàn)元)存在較好的線性關(guān)系,下表記錄了最近5次該產(chǎn)品的相關(guān)數(shù)據(jù).
x(萬(wàn)元) | 3 | 5 | 7 | 9 | 11 |
y(萬(wàn)元) | 8 | 10 | 13 | 17 | 22 |
(1)求y關(guān)于x的線性回歸方程;
(2)根據(jù)(1)中的回歸方程,判斷該企業(yè)甲產(chǎn)品投入成本12萬(wàn)元的毛利率更大還是投入成本15萬(wàn)元的毛利率更大(毛利率)?
相關(guān)公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)口袋中有個(gè)白球和個(gè)紅球(,且),每次從袋中摸出兩個(gè)球(每次摸球后把這兩個(gè)球放回袋中),若摸出的兩個(gè)球顏色相同為中獎(jiǎng),否則為不中獎(jiǎng).
(1)試用含的代數(shù)式表示一次摸球中獎(jiǎng)的概率;
(2)若,求三次摸球恰有一次中獎(jiǎng)的概率;
(3)記三次摸球恰有一次中獎(jiǎng)的概率為,當(dāng)為何值時(shí),取最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的個(gè)數(shù)是_________.
(1)命題“若,則方程有實(shí)數(shù)根”的逆否命題為“若方程無(wú)實(shí)數(shù)根,則”.
(2)命題“,”的否定“,”.
(3)若為假命題,則,均為假命題.
(4)“”是“直線:與直線:平行”的充要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P—ABCD中,底面ABCD是菱形,∠ABC=60°,PA=AC,PB=PD=AC,E是PD的中點(diǎn),求證:
(1)PB∥平面ACE;
(2)平面PAC⊥平面ABCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體的棱長(zhǎng)為, 分別是的中點(diǎn),點(diǎn)在棱
上, ().
(Ⅰ)三棱錐的體積分別為,當(dāng)為何值時(shí), 最大?最大值為多少?
(Ⅱ)若平面,證明:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,為橢圓短軸的一個(gè)端點(diǎn),、為橢圓的左、右焦點(diǎn),線段的延長(zhǎng)線與橢圓相交于點(diǎn),且.
(1)求橢圓的方程;
(2)如圖,點(diǎn)為橢圓上一動(dòng)點(diǎn)(非長(zhǎng)軸端點(diǎn)),的延長(zhǎng)線與橢圓交于點(diǎn),的延長(zhǎng)線與橢圓交于點(diǎn),求面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com