2.已知函數(shù)f(x)定義域?yàn)镽,若存在常數(shù)M,使|f(x)|≤M|x|對(duì)一切實(shí)數(shù)均成立,則稱f(x)為°F函數(shù),給出下列函數(shù):
①f(x)=0;
②f(x)=x2;
③f(x)=sinx+cosx;
④f(x)=$\frac{x}{{x}^{2}+x+1}$;
⑤f(x)是定義域在R上的奇函數(shù),且滿足對(duì)一切實(shí)數(shù)均有|f(x1)-f(x2)|≤|x1-x2|.
其中是°F函數(shù)的序號(hào)為①④⑤.(少選或多選一律不給分)

分析 由存在常數(shù)M,使|f(x)|≤M|x|對(duì)一切實(shí)數(shù)均成立,只要找到M即可判斷出正誤.

解答 解:由題意對(duì)于①f(x)=0,顯然對(duì)任意常數(shù)m>0,均成立,故f(x)為°F函數(shù);
對(duì)于②,x→∞時(shí),$\frac{|f(x)|}{|x|}$=|x|→+∞,因此|f(x)|<m|x|,不成立,故其不是°F函數(shù);
對(duì)于③,f(x)=sinx+cosx,由于x=0時(shí),|f(x)|<m|x|不成立,故不是°F函數(shù);
對(duì)于④,f(x)=$\frac{x}{{x}^{2}+x+1}$;|f(x)|=|x|$•\frac{1}{{x}^{2}+x+1}$≤$\frac{4}{3}$|x|,故對(duì)任意的m>$\frac{4}{3}$,都有|f(x)|<m|x|,故其是°F函數(shù);
對(duì)于⑤f(x)是定義域在R上的奇函數(shù),因此f(x)具有單調(diào)性,或f(x)≡0,因此滿足對(duì)一切實(shí)數(shù)均有|f(x1)-f(x2)|≤|x1-x2|.
綜上可得:①④⑤正確.
故答案為:①④⑤.

點(diǎn)評(píng) 本題考查了新定義、函數(shù)的性質(zhì)、不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)p:log2x<0,q:2x≥0,則p是¬q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f(x)滿足f(-3)=0,且f'(x)g(x)+f(x)g'(x)>0,則不等式f(x)g(x)<0的解集是( 。
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,0)∪(0,3)D.(-∞,-3)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列四個(gè)函數(shù):①y=3-x;②y=$\frac{1}{x}$;③y=x2+2x-10;④y=$\left\{\begin{array}{l}-x{\;}^{\;}(x≤0)\\-\frac{1}{x}{\;}^{\;}(x>0)\end{array}$.其中定義域與值域相同的函數(shù)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.給出下列演繹推理:“整數(shù)是有理數(shù),___,所以-3是有理數(shù)”,如果這個(gè)推理是正確的,則其中橫線部分應(yīng)填寫-3是整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ax3-$\frac{3}{2}$x2+1(x∈R),其中a>0.
(1)若a=1,求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)若對(duì)?x∈[-1,$\frac{1}{2}$],不等式f(x)<a2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)已知等差數(shù)列{an}中,a1=$\frac{3}{2},d=-\frac{1}{2},{S_n}$=-15,求n和an;
(2)已知等比數(shù)列{an}中,q=2,an=96,Sn=189,求a1和n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,D是AB的中點(diǎn),AB=2,CD=$\sqrt{7}$.
(Ⅰ)若BC=$\sqrt{5}$,求AC的值;
(Ⅱ)若∠A=$\frac{π}{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)a為$f(x)=\frac{4}{3}{x^3}+2{x^2}-3x-1$的極值點(diǎn),且函數(shù)g(x)=$\left\{\begin{array}{l}{{a}^{x}(x<0)}\\{lo{g}_{a}x(x≥0)}\end{array}\right.$,則$g(\frac{1}{4})+g({log_2}\frac{1}{5})$=( 。
A.$\frac{9}{20}$B.8C.$\frac{11}{5}$D.7

查看答案和解析>>

同步練習(xí)冊(cè)答案