10.下列四個函數(shù):①y=3-x;②y=$\frac{1}{x}$;③y=x2+2x-10;④y=$\left\{\begin{array}{l}-x{\;}^{\;}(x≤0)\\-\frac{1}{x}{\;}^{\;}(x>0)\end{array}$.其中定義域與值域相同的函數(shù)有( 。
A.1個B.2個C.3個D.4個

分析 根據(jù)定義域的求法和值域的求法依次求解即可.

解答 解:①y=3-x的定義域和值域均為R;
②y=$\frac{1}{x}$;定義域為{x∈R|x≠0},∴值域{y∈R|y≠0},定義域與值域相同;
③y=x2+2x-10的定義域為R,值域為{y|y≥-11},定義域與值域不相同;
④y=$\left\{\begin{array}{l}-x{\;}^{\;}(x≤0)\\-\frac{1}{x}{\;}^{\;}(x>0)\end{array}$的定義域和值域均為R.
定義域與值域相同的函數(shù)是①②④,共有3個.
故選C.

點(diǎn)評 本題考查了函數(shù)的定義域和值域的求法.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一個盒子里裝有標(biāo)號為1,2,…,10的標(biāo)簽,隨機(jī)地選取兩張標(biāo)簽,若標(biāo)簽的選取是無放回的,則兩張標(biāo)簽上數(shù)字為相鄰整數(shù)的概率為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=5x+sinx(x∈R),且f(x2-4x)+f(y2+3)≤0,則當(dāng)y>0時,$\frac{y}{x}$+$\frac{x}{y}$的取值范圍是( 。
A.$({0,\frac{{4\sqrt{3}}}{3}}]$B.$[{2,\frac{{4\sqrt{3}}}{3}}]$C.$[{\frac{{4\sqrt{3}}}{3},+∞})$D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知i是虛數(shù)單位,計算i+i2+i3+…+i2015=(  )
A.-iB.-1-iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,角A、B、C的對邊分別為a、b、c,若b=1,c=$\sqrt{2}$,A=45°,則a的長為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}1-|{x+1}|,x∈[-2,0]\\ 2f(x-2),x∈(0,+∞)\end{array}$,若函數(shù)h(x)=f(x)-x-a在區(qū)間[-2,4]內(nèi)有3個零點(diǎn),則實(shí)數(shù)a的取值范圍是(-2,0)∪{1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)定義域為R,若存在常數(shù)M,使|f(x)|≤M|x|對一切實(shí)數(shù)均成立,則稱f(x)為°F函數(shù),給出下列函數(shù):
①f(x)=0;
②f(x)=x2;
③f(x)=sinx+cosx;
④f(x)=$\frac{x}{{x}^{2}+x+1}$;
⑤f(x)是定義域在R上的奇函數(shù),且滿足對一切實(shí)數(shù)均有|f(x1)-f(x2)|≤|x1-x2|.
其中是°F函數(shù)的序號為①④⑤.(少選或多選一律不給分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,已知AB是圓O的直徑,直線CD與圓O相切于點(diǎn)C,AC平分∠DAB,AD與圓O相交于點(diǎn)E
(1)求證:AD⊥CD
(2)若AE=3,CD=2,求OC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)f(x)=mx2-6x+2有且只有一個零點(diǎn),則實(shí)數(shù)m的值為0或$\frac{9}{2}$.

查看答案和解析>>

同步練習(xí)冊答案