分析 (Ⅰ)連接BD,設(shè)AC∩BD=O,連結(jié)OE,推導(dǎo)出PB∥EO,由此能證明PB∥平面AEC.
(Ⅱ)分別以$\overrightarrow{AB}$、$\overrightarrow{AD}$、$\overrightarrow{AP}$的方向?yàn)樽鴺?biāo)軸方向建立空間直角坐標(biāo)系,利用向量法能求出二面角C-AF-D的大小.
解答 證明:(Ⅰ)連接BD,設(shè)AC∩BD=O,連結(jié)OE,
∵四邊形ABCD為矩形,∴O是BD的中點(diǎn),
∵點(diǎn)E是棱PD的中點(diǎn),∴PB∥EO,
又PB?平面AEC,EO?平面AEC,
∴PB∥平面AEC.
解:(Ⅱ)由題可知AB,AD,AP兩兩垂直,
分別以$\overrightarrow{AB}$、$\overrightarrow{AD}$、$\overrightarrow{AP}$的方向?yàn)樽鴺?biāo)軸方向建立空間直角坐標(biāo)系.
設(shè)由$PB=\sqrt{2}AB$可得AP=AB,
于是可令A(yù)P=AB=AD=2,則
A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,1,1),F(xiàn)(1,1,1)
設(shè)平面CAF的一個(gè)法向量為$\overrightarrow n=(x,1,0)$.由于$\overrightarrow{AC}=(2,2,0)$,
∴$\overrightarrow{AC}•\overrightarrow n=(2,2,0)•(x,1,0)=2x+2=0$,解得x=-1,所以$\overrightarrow n=(-1,1,0)$.
∵y軸?平面DAF,∴設(shè)平面DAF的一個(gè)法向量為$\overrightarrow m=(1,0,z)$.
∵$\overrightarrow{AF}=(1,1,1)$,∴$\overrightarrow{AF}•\overrightarrow m=(1,1,1)•(1,0,z)=1+z=0$,解得z=-1,
∴$\overrightarrow m=(1,0,-1)$.
∴$|cos\left?{\overrightarrow m,\overrightarrow n}\right>|=\frac{|\overrightarrow m•\overrightarrow n|}{|\overrightarrow m|•|\overrightarrow n|}=\frac{1}{2}$.∴二面角C-AF-D的大小為60°.
點(diǎn)評(píng) 本題考查線面平行的證明,考查二面角的大小的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方思想、數(shù)形結(jié)合思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{5}$ | B. | $\frac{1}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 81 | B. | $\frac{81}{2}$ | C. | $\frac{81}{4}$ | D. | $\frac{81}{8}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com