13.$\sqrt{1-2sin4cos4}$等于( 。
A.cos4-sin4B.sin4-cos4C.±(sin4-cos4)D.sin4+cos4

分析 原式被開方數(shù)利用同角三角函數(shù)間的基本關(guān)系及二次根式的化簡(jiǎn)公式化簡(jiǎn),在依據(jù)角的范圍得到結(jié)果.

解答 解:$\sqrt{1-2sin4cos4}$=$\sqrt{co{s}^{2}4+si{n}^{2}4-2sin4cos4}$=$\sqrt{(cos4-sin4)^{2}}$=|cos4-sin4|.
∵$\frac{5}{4}$π<4<$\frac{3}{2}$π,
∴由三角函數(shù)線易知cos4>sin4.
∴$\sqrt{1-2sin4cos4}$=cos4-sin4.
故選:A.

點(diǎn)評(píng) 此題考查了二倍角的正弦以及誘導(dǎo)公式的運(yùn)用,熟練掌握公式是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.甲乙兩家快餐店對(duì)某日7個(gè)時(shí)段來店光臨的客人人數(shù)進(jìn)行統(tǒng)計(jì)繪制莖葉圖如圖所示(下面簡(jiǎn)稱甲數(shù)據(jù)、乙數(shù)據(jù)),且乙數(shù)據(jù)的眾數(shù)為17,甲數(shù)據(jù)的平均數(shù)比乙數(shù)據(jù)平均數(shù)少2.
(1)求a,b的值,并計(jì)算乙數(shù)據(jù)的方差;
(2)現(xiàn)從乙數(shù)據(jù)中不高于16的數(shù)據(jù)中隨機(jī)抽取兩個(gè),求至少有一個(gè)數(shù)據(jù)小于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若數(shù)列{an}中,a1=a2=1,an+2-an+1+an=0,則a2016=( 。
A.-1B.0C.1D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,角B為銳角,且2sinAsinC=sin2B,則$\frac{a+c}$的取值范圍為(  )
A.$({1,\sqrt{3}})$B.$({\sqrt{2},\sqrt{3}})$C.$({\frac{1}{2},\frac{{\sqrt{3}}}{2}})$D.$({\frac{{\sqrt{2}}}{2},\frac{{\sqrt{3}}}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=1+2sin(2x-$\frac{π}{3}$).
(1)用五點(diǎn)法作圖作出f(x)在x∈[0,$\frac{π}{2}$]的圖象;
(2)求f(x)在x∈[$\frac{π}{4}$,$\frac{π}{2}$]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知三條直線l1:4x+y=1,l2:x-y=0,l3:2x-my=3,若l1關(guān)于l2對(duì)稱的直線與l3垂直,則實(shí)數(shù)m的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)△ABC是邊長(zhǎng)為1的正三角形,點(diǎn)P1,P2,P3四等分線段BC(如圖所示).
(1)求$\overrightarrow{AB}$•$\overrightarrow{A{P_1}}$+$\overrightarrow{A{P_1}}$•$\overrightarrow{A{P_2}}$的值;
(2)Q為線段AP1上一點(diǎn),若$\overrightarrow{AQ}$=m$\overrightarrow{AB}$+$\frac{1}{12}$$\overrightarrow{AC}$,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知O為正三角形ABC內(nèi)一點(diǎn),且滿足$\overrightarrow{OA}$+λ$\overrightarrow{OB}$+(1+λ)$\overrightarrow{OC}$=$\overrightarrow 0$,若△OAB的面積與△OAC的面積比值為3,則λ的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知log182=a,適用a表示log32=-2a.

查看答案和解析>>

同步練習(xí)冊(cè)答案