若函數(shù)f(x)=
(3a-1)x+4a(x<1)
logax(x≥1)
是R上的減函數(shù),則a的取值范圍(  )
A、a
1
3
B、a
1
3
C、
1
7
≤a<
1
3
D、0<a<
1
3
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)單調(diào)性利用最值大小,轉(zhuǎn)化為
0<a<1
3a-1<0
7a-1≥0
即得出;
1
7
≤a<
1
3
,即可得出答案.
解答: 解:∵函數(shù)f(x)=
(3a-1)x+4a(x<1)
logax(x≥1)
是R上的減函數(shù),
0<a<1
3a-1<0
7a-1≥0
即得出;
1
7
≤a<
1
3
,
故選:C
點(diǎn)評(píng):本題綜合考查了函數(shù)的單調(diào)性,轉(zhuǎn)化為不等式組求解即可,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等式1+2+3+…+n=
n(n+1)
2
證明過程如下:
①當(dāng)n=1時(shí),左邊=1,右邊=1等式成立;
②假設(shè)當(dāng)n=k時(shí)等式成立,即1+2+3+…+k=
k(k+1)
2
,那么當(dāng)n=k+1時(shí),1+2+3+…+k+(k+1)=
k(k+1)
2
+(k+1)=
(k+1)[(k+1)+1]
2
等式也成立,故原等式成立,以上證明方法是( 。
A、分析法B、綜合法
C、反證法D、數(shù)學(xué)歸納法

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩形ABCD,|AB|=4,|AD|=1,點(diǎn)O為線段AB的中點(diǎn).動(dòng)點(diǎn)P沿矩形ABCD的邊從B逆時(shí)針運(yùn)動(dòng)到A.當(dāng)點(diǎn)P運(yùn)動(dòng)過的路程為x時(shí),記點(diǎn)P的運(yùn)動(dòng)軌跡與線段OP、OB圍成的圖形面積為f(x).
(1)求f(x)表達(dá)式;
(2)若f(x)=2,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體的棱長(zhǎng)為2,試建立適當(dāng)?shù)目臻g直角坐標(biāo)系,寫出正方體各頂點(diǎn)的坐標(biāo)及各邊中點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果-
1
4
a>-
1
3
b,則
1
4
a<
1
3
b.
 
(判斷對(duì)錯(cuò)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直二面角D-AB-E中,四邊形ABCD是邊長(zhǎng)為2的正方形,AE=EB,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.
(Ⅰ)求證:AE⊥平面BCE;
(Ⅱ)求點(diǎn)D到平面ACE的距離;
(Ⅲ)求二面角E-AC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

棱長(zhǎng)為1的正方體ABCD-A′B′C′D′,P為棱CC′上一點(diǎn),Q為AD中點(diǎn).
(1)當(dāng)PC為何值時(shí),AP⊥A′Q;
(2)在(1)的情況下,求異面直線A′B與AP所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值:[(-3)2] 
3
2
-(
1
2
-1+log0.57+log212-
1
2
log242+log2
7
48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)
f(x)=
3x(x>0)
2(x=0)
x+5(x≤0)
,則f{f[f(-5)]}=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案