精英家教網 > 高中數學 > 題目詳情
1.集合A={a,b}則它的子集有( 。
A.5個B.4個C.3個D.2個

分析 子集寫出集合A的所有真子集得答案.

解答 解:∵集合A={a,b},
∴它的子集有:∅,{a},,{a,b}共4個.
故選:B.

點評 本題考查子集與真子集,是基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

11.已知a,b,c分別為△ABC內角A,B,C的對邊,其中a2=2bc.
(1)若a=b,求cosA的值;
(2)設$A=\frac{π}{2}$,且$b=\sqrt{6}$,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.在△ABC中,b=8,c=8$\sqrt{3}$,S△ABC=16$\sqrt{3}$,則∠A等于( 。
A.30°B.60°C.60° 或120°D.30° 或 150°

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.如果sin(π-A)=$\frac{1}{2}$,那么cos($\frac{π}{2}$-A)=( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.已知$\frac{π}{4}$<α<$\frac{π}{2}$,sin2α=$\frac{24}{25}$,則cosα-sinα=( 。
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.±$\frac{1}{5}$D.±$\frac{7}{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.有一批貨物需要用汽車從生產商所在城市甲運至銷售商所在城市乙,已知從城市甲到城市乙只有兩條公路,且通過這兩條公路所用的時間互不影響.據調查統,通過這兩條公路從城市甲到城市乙的200輛汽車所用時間的頻數分布如表:
所用的時間(天數)10111213
通過公路l的頻數20402020
通過公路2的頻數10404010
假設汽車A只能在約定日期(某月某日)的前11天出發(fā),汽車B只能在約定日期的前12天出發(fā)(將頻率視為概率).
(I)為了盡最大可能在各自允許的時間內將貨物運往城市乙,估計汽車A和汽車B應如何選擇各自的路徑;
(Ⅱ)若通過公路l、公路2的“一次性費用”分別為3.2萬元、1.6萬元(其他費用忽略不計),此項費用由生產商承擔.如果生產商恰能在約定日期當天將貨物送到,則銷售商一次性支付給生產商40萬元,若在約定日期前送到;每提前一天銷售商將多支付給生產商2萬元;若在約定日期后送到,每遲到一天,生產商將支付給銷售商2萬元.如果汽車A,B按(I)中所選路徑運輸貨物,試比較哪輛汽車為生產商獲得的毛利潤更大.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)離心率e=$\frac{{\sqrt{2}}}{2}$,準線方程為x=2$\sqrt{2}$,左、右焦點分別為F1,F2
(1)求橢圓C的方程
(2)已知點P(${\sqrt{2}$,1)點M在線段PF2上,且MF1+MF2=3,F1M延長線交橢圓于點Q,求$\frac{{{S_{△MP{F_1}}}}}{{{S_{△MQ{F_2}}}}}$;
?(3)點A、B為橢圓C上動點,PA、PB斜率分別為k1,k2,當k1k2=-$\frac{1}{2}$時,求$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.如圖所示正方形O'A'B'C'的邊長為2cm,它是一個水平放置的一個平面圖形的直觀圖,則原圖形的面積是4$\sqrt{2}$cm2

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.已知△ABC的周長為$\sqrt{3}+1$,且$sinA=\sqrt{3}sinC-sinB$.
(1)求邊c的長;    
(2)若△ABC的面積為$\frac{1}{3}sinC$,求角C的度數.

查看答案和解析>>

同步練習冊答案